Accurate Spectroscopic Characterization and Formation Pathways of Ethane 1, 1 diol

A Potential Interstellar Molecule

Authors

  • Emmanuel E. Etim Department of Chemical Sciences, Federal University Wukari, PMB 1020, Nigeria Author
  • Emmanuel Godwin Oko Astrochemistry & Astrophysics Center, Institute of Applied Chemical Sciences, Universidad Autonoma de Chile, Av. Pedro de Valdivia 425, Providencia, Santiago, Chile Author
  • Humphrey Sam Samuel Department of Chemical Sciences, Federal University Wukari, PMB 1020, Nigeria Author

DOI:

https://doi.org/10.62050/ljsir2025.v3n1.393

Keywords:

1,1 ethanediol, spectroscopic constants, formation pathways, astrochemistry

Abstract

With exceptions, the correlation between relative energies of isomers and their relative abundances in the interstellar medium (ISM) holds to an extent. Among the C2H6O2 isomers, ethylene glycol is the only known interstellar isomer but there is no report regarding the astronomical searches for ethane 1,1-ethanediol (the most stable isomer of the group) due to lack of spectroscopic and other parameters that would have warranted the search.  In this article, the most energetically stable conformer of 1,1-ethanediol was investigated, its spectroscopic, and other parameters are obtained from high level ab initio quantum chemical methods. Accurate spectroscopic parameters are obtained at the CCSD(T) level. The proposed formation route of ethane 1,1-diol has a surmountable barrier considering the nature/abundance of the participating species and the energy sources in ISM. The astrophysical implications of these results are discussed and the astronomical searches of ethene 1, 1 diol are proposed.

Downloads

Download data is not yet available.

References

Bennett, C. J., & Kaiser, R. I. (2007). The formation of acetic acid (CH3COOH) in interstellar ice analogs. The Astrophysical Journal, 660(2), 1289–1295. https://doi.org/10.1086/513267

Charnley, S. B. (2001). In F. Giovannelli (Ed.), The bridge between the Big Bang and biology (Special Vol., p. 139). Consiglio Naz. Ric.

Davies, J. A., Besley, N. A., Yang, S., & Ellis, A. M. (2019). Probing elusive cations: Infrared spectroscopy of protonated acetic acid. The Journal of Physical Chemistry Letters, 10(9), 2108–2112. https://doi.org/10.1021/acs.jpclett.9b00767

Deng, C., & Zhang, K. (2021). Thermal conductivity of 1,2-ethanediol and 1,2-propanediol binary aqueous solutions at temperature from 253 K to 373 K. International Journal of Thermophysics, 42(6). https://doi.org/10.1007/s10765-021-02837-6

Enrique-Romero, J., Rimola, A., Ceccarelli, C., & Balucani, N. (2016). The (impossible?) formation of acetaldehyde on the grain surfaces: Insights from quantum chemical calculations. Monthly Notices of the Royal Astronomical Society: Letters, 459(1), L6–L10. https://doi.org/10.1093/mnrasl/slw031

Etim, E. E, and E. Arunan (2015). Rotational Spectroscopy and Interstellar Molecules. Planex Newsletter, 5 (2): 16-21. Invited mini-review article.

Etim, E. E, and E. Arunan (2016). Interstellar Isomeric Species: Energy, Stability and Abundance Relationship. European Physical Journal Plus, 131:448. https://doi.org/10.1140/epjp/i2016-16448-0

Etim, E. (2023). Benchmark studies on the isomerization enthalpies for interstellar molecular species. Journal of the Nigerian Society of Physical Sciences, 5(27). https://doi.org/10.46481/jnsps.2023.527

Etim, E. E and E. Arunan (2017a). Accurate Rotational Constants for linear Interstellar Carbon Chains: Achieving Experimental Accuracy. Astrophysics and Space Science, 362, 4. https://doi.org/10.1007/s10509-016-2979-6

Etim, E. E and E. Arunan (2017b). Partition Function and Astronomical Observation of Interstellar Isomers: Is there a link? Advances in Space Research, 59(4)1161-1171.

Etim, E. E, Prsanta Gorai, Ankan Das, Sandip Charabati and E. Arunan (2016). Systematic Theoretical Study on the Interstellar Carbon Chain Molecules. The Astrophysical Journal, 832,144. https://doi.org/10.3847/0004-637X/832/2/144

Etim, E. E., & Arunan, E. (2016). Interstellar isomeric species: Energy, stability and abundance relationship. European Physical Journal Plus, 131(12). https://doi.org/10.1140/epjp/i2016-16448-0

Etim, E. E., Gorai, P., Das,A., Chakrabarti, S. K and Arunan, E. 2018b. Interstellar Hydrogen Bonding. Advances in Space Research, 61(11): 2870-2880, https://doi.org/10.1016/j.asr.2018.03.003.

Etim, E. E., Prsanta Gorai, Ankan Das, and E. Arunan (2017).C5H9N Isomers: Pointers to Possible Branched Chain Interstellar Molecules. European Physical Journal D, 71:86.

Etim, E. E., Prsanta Gorai, Ankan Das, and E. Arunan (2018a). Theoretical investigation of interstellar C–C–O and C–O–C bonding backbone molecules. Astrophysics and Space Science, 363:6. https://doi.org/10.1007/s10509-017-3226-5

Franco, B., Blumenstock, T., Cho, C., Clarisse, L., Clerbaux, C., Coheur, P.-F., & Taraborrelli, D. (2021). Ubiquitous atmospheric production of organic acids mediated by cloud droplets. Nature, 593(7858), 233–237. https://doi.org/10.1038/s41586-021-03462-x

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., ... Fox, D. J. (2016). Gaussian 09 (Revision A.02) [Computer software]. Gaussian, Inc.

Harding, M.E., Metzroth, J. T., Gauss, and Auer, A.A. (2008). J. Chem. Theor. Comp. 4, 64

Herbst, E. (1995). Chemistry in the interstellar medium. Annual Review of Physical Chemistry, 46(1), 27–54. https://doi.org/10.1146/annurev.pc.46.100195.000331

Hollis, J. M., Lovas, F. J., Jewell, P. R., & Coudert, L. H. (2002). Interstellar Antifreeze: Ethylene Glycol. The Astrophysical Journal, 571(1), L59–L62. https://doi.org/10.1086/341148

Hollis, J. M., Lovas, F. J., Jewell, P. R., & Coudert, L. H. (2002). Interstellar Antifreeze: Ethylene Glycol. The Astrophysical Journal, 571(1), L59–L62. http://dx.doi.org/10.1016/j.asr.2016.11.021

Inostroza-Pino, N., Emmanuel Godwin, O., Mardones, D., & Ge, J. (2024). Formation pathways of formic acid (HCOOH) in regions with methanol ices. Astronomy & Astrophysics, 688, A140. https://doi.org/10.1051/0004-6361/202346642

Manna, A., Pal, S., & Viti, S. (2024). Detection of antifreeze molecule ethylene glycol in the hot molecular core G358.93–0.03 MM1. Monthly Notices of the Royal Astronomical Society, 533(1), 1143–1155. https://doi.org/10.1093/mnras/stae1864

Mehringer, D. M., Snyder, L. E., Miao, Y., & Lovas, F. J. (1997). Detection and confirmation of interstellar acetic acid. The Astrophysical Journal, 480(1), L71.

Nagy, P. I., Dunn, W. J., III, Alagona, G., & Ghio, C. (1991). Theoretical calculations on 1,2-ethanediol. Gauche-trans equilibrium in gas-phase and aqueous solution. Journal of the American Chemical Society, 113(18), 6719–6729. https://doi.org/10.1021/ja00018a002

Naik, V., Voulgarakis, A., Fiore, A. M., Horowitz, L. W., Lamarque, J.-F., Lin, M., Prather, M. J., Young, P. J., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R., Eyring, V., Faluvegi, G., Folberth, G. A., Josse, B., Lee, Y. H., Mackenzie, I. A., Nagashima, T., van Noije, T. P. C., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R., Shindell, D. T., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S., & Zeng, G. (2013). Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 13(10), 5277–5298. https://doi.org/10.5194/acp-13-5277-2013

National Aeronautics and Space Administration, Science Mission Directorate. (2010). Infrared Waves. Retrieved [insert date - e.g. August 10, 2016], from NASA Science website: http://science.nasa.gov/ems/07_infraredwaves

National Center for Biotechnology Information. (n.d.). PubChem compound summary for CID 7928, 1,1-Ethanediol. PubChem. Retrieved [date], from https://pubchem.ncbi.nlm.nih.gov/compound/1_1-Ethanediol

Neufeld, D. (n.d.). *Water in the diffuse interstellar medium*. European Space Agency.https://www.cosmos.esa.int/documents/12133/1135364/12-1520_NeufeldD.pdf/2c34f99c-d34e-4821-844f-4a478a4eed8a

Patra, P. K., Krol, M. C., Montzka, S. A., Arnold, T., Atlas, E. L., Lintner, B. R., Stephens, B. B., Xiang, B., Elkins, J. W., Fraser, P. J., Ghosh, A., Hintsa, E. J., Hurst, D. F., Ishijima, K., Krummel, P. B., Miller, B. R., Miyazaki, K., Moore, F. L., Mühle, J., O'Doherty, S., Prinn, R. G., Steele, L. P., Takigawa, M., Wang, H. J., Weiss, R. F., Wofsy, S. C., & Young, D. (2014). Observational evidence for interhemispheric hydroxyl-radical parity. Nature, 513(7517), 219–223. https://doi.org/10.1038/nature13767

Perrero, J., Ugliengo, P., Ceccarelli, C., & Rimola, A. (2023). Quantum mechanical modeling of the grain-surface formation of acetaldehyde on H2O

Simm, G. N., Vaucher, A. C., & Reiher, M. (2019). Exploration of reaction pathways and chemical transformation networks. The Journal of Physical Chemistry. A, 123(2), 385–399. https://doi.org/10.1021/acs.jpca.8b10007

Singh, K.K., Tandon, P., Misra, A. (2019). Formation of Acetaldehyde in the Interstellar Medium from the Reaction of Methanol and Atomic Carbon in Interstellar Water Ice. In: Singh, D., Das, S., Materny, A. (eds) Advances in Spectroscopy: Molecules to Materials. Springer Proceedings in Physics, vol 236. Springer, Singapore. https://doi.org/10.1007/978-981-15-0202-6_33

Stanton, J. F., Gauss, J., Cheng, L., Harding, M. E., Matthews, D. A., Szalay, P. G., Auer, A. A., Bartlett, R. J., Benedikt, U., Berger, C., Bernholdt, D. E., Bomble, Y. J., Christiansen, O., Engel, F., Faber, R., Heckert, M., Heun, O., Huber, C., Jagau, T.-C., ... Fox, D. J. (n.d.). CFOUR, a quantum chemical program package. http://www.cfour.de

Swalen, J. D., & Costain, C. C. (1959). Internal rotation in molecules with two internal rotors: Microwave spectrum of acetone. The Journal of Chemical Physics, 31(6), 1562–1574. https://doi.org/10.1063/1.1730653

Toraya, T., Honda, S., & Fukui, S. (1979). Fermentation of 1,2-propanediol with 1,2-ethanediol by some genera of Enterobacteriaceae, involving coenzyme B12-dependent diol dehydratase. Journal of Bacteriology, 139(1), 39–47. https://doi.org/10.1128/jb.139.1.39-47.1979

Tsai, S.-R., & Hamblin, M. R. (2017). Biological effects and medical applications of infrared radiation. Journal of Photochemistry and Photobiology. B, Biology, 170, 197–207. https://doi.org/10.1016/j.jphotobiol.2017.04.014

Vatansever, F., & Hamblin, M. R. (2012). Far infrared radiation (FIR): its biological effects and medical applications. Photonics & Lasers in Medicine, 4(4), 255–266. https://doi.org/10.1515/plm-2012-0034

Front

Published

2025-01-28

How to Cite

Accurate Spectroscopic Characterization and Formation Pathways of Ethane 1, 1 diol: A Potential Interstellar Molecule. (2025). Lafia Journal of Scientific and Industrial Research, 3(1), 64-70. https://doi.org/10.62050/ljsir2025.v3n1.393

Most read articles by the same author(s)

1 2 3 4 5 6 > >> 

Similar Articles

1-10 of 12

You may also start an advanced similarity search for this article.