Antibacterial Effect of Gongronema latifolium Leaf Extract on Staphylococcus aureus Isolates from Skin of Human Subjects in Lafia Metropolis
DOI :
https://doi.org/10.62050/ljsir2025.v3n1.367Mots-clés :
Antimicrobial, Staphylococcus aureus, Gongronema latifolium, Ethanol, Leaf Extracts, NigeriaRésumé
Antibiotics have been critical in the fight against infectious diseases. However, plants have also been used to treat diseases due to presence of some chemical compounds (active ingredients) that possess medicinal properties. This study investigated the antibacterial effect of Gongronema latifolium (amaranth globe) leaf extract on staphylococcus aureus isolates from the skin of human subjects in Lafia metropolis, Nasarawa State, Nigeria. Aqueous and ethanol leaf extracts of G. latifolium were screened for antibacterial activity against S. aureus isolates using the agar disk diffusion method. A total of forty specimens were collected and S. aureus was isolated using standard biochemical methods. Hospital isolates had the highest lowest percentage sensitivities of 85.71% and 0.00% from 300 mg/mL ethanol and 200 mg/mL aqueous extracts respectively. Also, restaurant isolates had the highest percentage and lowest sensitivities of 83.33% and 0.00% from 300 mg/mL ethanol and 200 mg/mL aqueous extracts respectively. Both extracts showed significant differences observed in their concentration effects against S. aureus isolates from restaurant subjects (p<0.05). MIC was 75 mg/mL for the aqueous extract against isolates obtained from both sources and that for the concentration ranges of 300-9.375 mg/mL and 200-6.25 mg/mL ethanol extract was observed to be 37.5 mg/mL and 50 mg/mL respectively. The result of the study showed that both extracts of G. latifolium have an inhibitory effect proportional to concentration on the test organism S. aureus isolates obtained from both subjects. Hence, ethanol extract of G. latifolium may potentially control skin respiratory and enteric infections caused by S. aureus.
##plugins.themes.default.displayStats.downloads##
Références
M. S. Linz, A. Mattappallil, D. Finkel, and D. Parker, “Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections,” Antibiotics, vol. 12, no. 3, Art. no. 3, Mar. 2023, https://doi.org/10.3390/antibiotics12030557
“Antimicrobial resistance.” Accessed: Aug. 01, 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
K. W. K. Tang, B. C. Millar, and J. E. Moore, “Antimicrobial Resistance (AMR),” Br J Biomed Sci, vol. 80, p. 11387, Jun. 2023, https://doi.org/10.3389/bjbs.2023.11387
G. Llauradó Maury et al., “Antioxidants in Plants: A Valorization Potential Emphasizing the Need for the Conservation of Plant Biodiversity in Cuba,” Antioxidants (Basel), vol. 9, no. 11, p. 1048, Oct. 2020, https://doi.org/10.3390/antiox9111048
V. T. Ebu, R. A. Anoh, R. A. Offiong, and P. A. Essoka, “Survey of Medicinal Plants Used in the Treatment of ‘Ailments of Utmost Native Importance’ in Cross River State, Nigeria,” Open Journal of Forestry, vol. 11, no. 3, Art. no. 3, Jun. 2021, https://doi.org/10.4236/ojf.2021.113020
C. Nwachukwu, C. Umeh, O. Slyvester, and C. Magnus, “Identification And Traditional Uses Of Some Common Medicinal Plants In Ezinihitte Mbaise L.G.A., Of Imo State, Nigeria,” 2010. Accessed: Aug. 07, 2024. [Online]. Available: https://www.semanticscholar.org/paper/Identification-And-Traditional-Uses-Of-Some-Common-Nwachukwu-Umeh/4cbb6d019df9b996134e950268669a756fe7920f
M. A. A. Ali, A. H. Lafta, and S. K. H. Jabar, “Antibacterial activity of alkaloidal compound isolated from leaves of Catharanthus roseaus (L.) against multi-drug resistant strains,” Dec. 2014. https://doi.org/10.5897/RPB13.0095
M. Aires-de-Sousa, T. Conceição, and H. de Lencastre, “Unusually high prevalence of nosocomial Panton-Valentine leukocidin-positive Staphylococcus aureus isolates in Cape Verde Islands.,” J Clin Microbiol, pp. 3790–3, 2006. https://doi.org/10.1128/JCM.01192-06
T. A. Taylor and C. G. Unakal, “Staphylococcus aureus Infection,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2024. Accessed: Aug. 07, 2024. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK441868/
J. V. de Oliveira Santos et al., “Panorama of Bacterial Infections Caused by Epidemic Resistant Strains,” Curr Microbiol, vol. 79, no. 6, p. 175, 2022, https://doi.org/10.1007/s00284-022-02875-9
W.-T. Liu et al., “Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: A comprehensive review,” Microbial Pathogenesis, vol. 156, p. 104915, Jul. 2021, https://doi.org/10.1016/j.micpath.2021.104915
N. Chaachouay and L. Zidane, “Plant-Derived Natural Products: A Source for Drug Discovery and Development,” Drugs and Drug Candidates, vol. 3, no. 1, Art. no. 1, Mar. 2024, https://doi.org/10.3390/ddc3010011
U. Ig, A. Ju, O.-R. A, U. Ig, A. Ju, and O.-R. A, “Plants used in the treatment of female infertility and other related health issues in Agbor, Ika South, Delta State, Nigeria,” World Journal of Advanced Research and Reviews, vol. 18, no. 1, Art. no. 1, 2023, https://doi.org/10.30574/wjarr.2023.18.1.0581
N. Vaou, E. Stavropoulou, C. Voidarou, C. Tsigalou, and E. Bezirtzoglou, “Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives,” Microorganisms, vol. 9, no. 10, p. 2041, Sep. 2021, https://doi.org/10.3390/microorganisms9102041
E. M. Abdallah, B. Y. Alhatlani, R. de Paula Menezes, and C. H. G. Martins, “Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the Post-Antibiotic Era,” Plants, vol. 12, no. 17, Art. no. 17, Jan. 2023, https://doi.org/10.3390/plants12173077
I. Górniak, R. Bartoszewski, and J. Króliczewski, “Comprehensive review of antimicrobial activities of plant flavonoids,” Phytochem Rev, vol. 18, no. 1, pp. 241–272, Feb. 2019, https://doi.org/10.1007/s11101-018-9591-z
N. Nasim, I. S. Sandeep, and S. Mohanty, “Plant-derived natural products for drug discovery: current approaches and prospects,” Nucleus (Calcutta), vol. 65, no. 3, pp. 399–411, 2022, https://doi.org/10.1007/s13237-022-00405-3
M. Prasathkumar, S. Anisha, C. Dhrisya, R. Becky, and S. Sadhasivam, “Therapeutic and pharmacological efficacy of selective Indian medicinal plants – A review,” Phytomedicine Plus, vol. 1, no. 2, p. 100029, May 2021, https://doi.org/10.1016/j.phyplu.2021.100029
I. Aibinu, T. Adenipekun, T. Adelowotan, T. Ogunsanya, and T. Odugbemi, “Evaluation of the Antimicrobial Properties of Different Parts of Citrus Aurantifolia (Lime Fruit) as Used Locally,” Afr J Tradit Complement Altern Med, vol. 4, no. 2, pp. 185–190, Nov. 2006. https://pubmed.ncbi.nlm.nih.gov/20162090/
A. F. Eleyinmi, “Chemical composition and antibacterial activity of Gongronema latifolium,” J Zhejiang Univ Sci B, vol. 8, no. 5, pp. 352–358, May 2007, https://doi.org/10.1631/jzus.2007.B0352
O. Morebise, “A Review on Gongronema latifolium, an Extremely Useful Plant with Great Prospects,” European Journal of Medicinal Plants, vol. 10, pp. 1–9, Jan. 2015, https://doi.org/10.9734/EJMP/2015/19713
N. H. Ugochukwu, N. E. Babady, M. Cobourne, and S. R. Gasset, “The effect ofGongronema latifolium extracts on serum lipid profile and oxidative stress in hepatocytes of diabetic rats,” J. Biosci., vol. 28, no. 1, pp. 1–5, Feb. 2003, https://doi.org/10.1007/BF02970124
N. H. Ugochukwu and N. E. Babady, “Antioxidant effects of Gongronema latifolium in hepatocytes of rat models of non-insulin dependent diabetes mellitus,” Fitoterapia, vol. 73, no. 7, pp. 612–618, Dec. 2002, https://doi.org/10.1016/S0367-326X(02)00218-6
M. Balogun, E. Besong, J. Obimma, O. Mbamalu, and S. Djobissie, “Gongronema Latifolium: A Phytochemical, Nutritional and Pharmacological Review,” Journal of Physiology and Pharmacology Advances, vol. 6, p. 1, Jan. 2016, https://doi.org/10.5455/jppa.1969123104000
O. A. Conrad and O. C. Chinedu, “Genetic Diversity, Conservation and Improvement of Gongronema latifolium Benth., in South-Eastern Nigeria Using the Internal Transcribed Spacer – ITS,” IOP Conf. Ser.: Earth Environ. Sci., vol. 1054, no. 1, p. 012013, Sep. 2022, https://doi.org/10.1088/1755-1315/1054/1/012013
M. Anderson, D. Panteli, R. van Kessel, G. Ljungqvist, F. Colombo, and E. Mossialos, “Challenges and opportunities for incentivising antibiotic research and development in Europe,” Lancet Reg Health Eur, vol. 33, p. 100705, Jul. 2023, https://doi.org/10.1016/j.lanepe.2023.100705
V. L. Simpkin, M. J. Renwick, R. Kelly, and E. Mossialos, “Incentivising innovation in antibiotic drug discovery and development: progress, challenges and next steps,” J Antibiot (Tokyo), vol. 70, no. 12, pp. 1087–1096, Dec. 2017, https://doi.org/10.1038/ja.2017.124
Y. Habboush and N. Guzman, “Antibiotic Resistance,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2024. Accessed: Aug. 08, 2024. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK513277/
M. A. Kohanski, D. J. Dwyer, and J. J. Collins, “How antibiotics kill bacteria: from targets to networks,” Nat Rev Microbiol, vol. 8, no. 6, pp. 423–435, Jun. 2010, https://doi.org/10.1038/nrmicro2333
G. Mancuso, A. Midiri, E. Gerace, and C. Biondo, “Bacterial Antibiotic Resistance: The Most Critical Pathogens,” Pathogens, vol. 10, no. 10, p. 1310, Oct. 2021, https://doi.org/10.3390/pathogens10101310
O. O. Ann, P. I. Adachukwu, and J. U. Ogechukwu, “Isolation and Identification of Bacterial Organisms that are Associated with the Spoilage of African Breadfruit,” 2014. https://ijcmas.com/vol-3-1/O.Ogbonna%20Ann,%20et%20al.pdf
M. Cheesbrough, District Laboratory Practice in Tropical Countries, Part 2. Cambridge University Press, 2005. https://www.medbox.org/preview/5255d6e1-05d4-41a9-beb2-02b60e695ecc/doc.pdf
J. C. Okpala, I. Sani, R. Abdullahi, H. N. Ifedilichukwu, and J. C. Igwe, “Effects of n-butanol fraction of Gongronema latifolium leave extract on some biochemical parameters in CCl4- induced oxidative damage in Wistar albino rats,” Afr. J. Biochem. Res., vol. 8, no. 2, pp. 52–64, Feb. 2014, https://doi.org/10.5897/AJBR2013.0741
A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, “Antibiotic susceptibility testing by a standardized single disk method,” Am J Clin Pathol, vol. 45, no. 4, pp. 493–496, Apr. 1966. https://doi.org/10.1093/ajcp/45.4_ts.493
T. Selvamohan and V. Sandhya, “Studies on bactericidal activity of different soaps against – bacterial strains,” Journal of Microbiology and Biotechnology Research, Mar. 2017, Accessed: Aug. 08, 2024. [Online]. Available: https://www.semanticscholar.org/paper/Studies-on-bactericidal-activity-of-different-soaps-Selvamohan-Sandhya/edf1fb68514f2650b407cc0463ad8bdefac9028a
NCCLS, Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, Approved Standard, 2nd Edition., vol. 22(6). in NCCLS Document, no. M31-A2, vol. 22(6). Clinical and Laboratory Standards Institute, Wayne, 2002. [Online]. Available: https://www.scirp.org/journal/paperinformation?paperid=45539#ref16
A. Al-Judaibi, “Antibacterial Effects of Extracts of Two Types of Red Sea Algae,” Journal of Biosciences and Medicines, vol. 2, no. 2, Art. no. 2, Apr. 2014, https://doi.org/10.4236/jbm.2014.22012
C. W. Ndubueze, J. N. Dike-Ndudim, and H. I. Udujih, “ANTIBACTERIAL EFFECT OF GONGRONEMA LATIFOLIUM LEAF EXTRACTS ON SELECTED GRAM POSITIVE AND NEGATIVE CLINICAL BACTERIAL ISOLATES,” European Journal of Botany, Plant Sciences and Phytology, vol. 5, no. 1, pp. 1–12, 2020. https://eajournals.org/ejbpsp/vol-5-issue-1/antibacterial-effect-of-gongronema-latifolium-leaf-extracts-on-selected-gram-positive-and-negative-clinical-bacterial-isolates/
C. V. Ilodibia, I. J. Ezeja, E. E. Akachukwu, M. U. Chukwuma, T. P. Egboka, and A. N. Emeka, “Phytochemical Screening and Antimicrobial Effects of Aqueous and Ethanol Leaf and Stem Extracts of Gongronema latifolium Benth.,” Research Journal of Botany, vol. 10, no. 2, pp. 50–60, Jul. 2015, https://doi.org/10.17311/rjb.2015.50.60
O. Nwinyi, S. N. Chinedu, and O. Ajani, “Evaluation of antibacterial activity of Psidium guajava and Gongronema Latifolium,” Journal of medicinal plant research, vol. 2, pp. 189–192, Sep. 2008. http://eprints.covenantuniversity.edu.ng/1936/1/Ajani-Nwinyi%20et%20al%202008%20JMPR.pdf
O. Morebise, M. A. Fafunso, J. M. Makinde, O. A. Olajide, and E. O. Awe, “Antiinflammatory property of the leaves of Gongronema latifolium,” Phytother Res, vol. 16 Suppl 1, pp. S75-77, Mar. 2002, https://doi.org/10.1002/ptr.784
N. P. Cheremisinoff, Industrial Solvents Handbook, Revised And Expanded, 2nd ed. Boca Raton: CRC Press, 2003. https://doi.org/10.1201/9780203911334
N. P. Akani, C. Nwachukwu, and I. O. Hakam, “Evaluation of the Antibacterial Activity of Gongronema latifolium and Costus afer Leaf Extracts on E. coli (ATCC 29455) and S. aureus (ATCC 25923),” International Journal of Pathogen Research, pp. 11–16, Nov. 2020, https://doi.org/10.9734/ijpr/2020/v5i430139
Téléchargements
Publiée
Numéro
Rubrique
Licence
(c) Copyright Lafia Journal of Scientific and Industrial Research 2024
Ce travail est disponible sous licence Creative Commons Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International.