Antibacterial potentials and DNA study of cobalt(II) complexes containing aminophenol Schiff base moiety
DOI:
https://doi.org/10.62050/ljsir2024.v2n2.314Keywords:
Aminophenol, Antibacterial, Cobalt (II) complexes, Schiff basesAbstract
The present study was carried out to investigate the effect of substituent groups on the antibacterial activities of 2-aminophenol Schiff bases and their cobalt (II) complexes. Development of new compounds with potential effects against pathogenic organisms has become necessary due to the increase in microbial resistance reported for existing antiseptics and disinfectants. In line with this, new cobalt (II) complexes with Schiff bases derived from 2-aminophenol and p-substituted benzaldehydes were synthesized. The compounds were characterized using elemental analysis, mass spectrometry, atomic absorption spectroscopy, electrospray ionization mass spectrometry, infrared spectroscopy, 1H NMR and electronic absorption spectroscopy. Results indicate that all metal complexes had a 1:2 metal ligand ratio with magnetic moments characteristic of tetrahedral geometry around the metal ion. The Schiff bases and their metal complexes were screened for in-vitro antibacterial activities against 6 human pathogenic bacteria usually found around the hospitals and homes; Escherichia coli (ATCC 8739), Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 19582), Bacillus cereus (10702), Enterococcus faecalis (ATCC 29212) and Kribsella pneumonia (ATCC 10031) with ampicillin used as the reference compound. DNA binding study using calf thymus DNA revealed intercalative mode of activity. The result showed that Schiff bases exhibited moderate inhibitory activity against the tested microorganisms while Schiff base metal complexes exhibited higher antibacterial activity when compared to ampicillin. Our results indicate that these complexes can be employed as active ingredients in development of broad-spectrum antibacterial agents.
Downloads
References
Larsson, D. G. J., & Flach, C-F. (2022). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20, 257-269, https://doi.org/10.1038/s41579-021-00649-x
Laxminarayan, R., Boeckel, T. V., Frost, I., Kariuki, S., Khan, E. A., Limmathurotsakul, D., & et al. (2020). The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. Lancet Infectious Diseases, 20, e51-e60, https://doi.org/10.1016/S1473-3099(20)30003-7
Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Jo Handelsman, J., (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8, 251-259, https://doi.org/10.1038/nrmicro2312
Ahammad, Z. S., Sreekrishnan, T. R., Hands, C. L., Knapp, C. W., & Graham, D. W. (2014). Increased water borne blaNDM 1resistance gene abundances associated with seasonal human pilgrimages to the upper ganges river. Environmental Science and Technology, 48, 3014-3020, https://doi.org/10.1021/es405348h
Kookana, R. S., Williams, M., Boxall, A. B. A., Larsson, D. G. J., Gaw, S., K. Choi, K., & et al. (2014). Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. Philosophical Transactions of the Royal Society B, 369, 20130586, https://doi.org/10.1098/rstb.2013.0586
Uyttendaele, M., Jaykus, L-A., Amoah, P., Chiodini, A., Cunliffe, D., Jacxsens, L., & et al. (2015). Microbial hazards in irrigation water: Standards, norms, and testing to manage use of water in fresh produce primary production. Comprehensive Reviews in Food Science and Food Safety, 14, 336-356, https://doi.org/10.1111/1541-4337.12133
Reid, C. J., Blau, K., Jechalke, S., Smalla, K., & Djordjevic, S. P. (2020). Whole Genome Sequencing of Escherichia coli From Store-Bought Produce, Frontiers in Microbiol. 10, 3050, https://doi.org/10.3389/fmicb.2019.03050
Blau, K., Bettermann, A., Jechalke, S., Fornefeld, E., Vanrobaeys, Y., Stalder, T., & et al. (2018). The Transferable Resistome of Produce, mBio, 9, e01300, https://doi.org/10.1128/mBio.01300-18
Khan, S. A., Siddiqui, A. A., & Bhatt, S., (2002). Analgesic Activity of Isatin Derivatives. Asian Journal of Chemistry, 14, 1117-1118
Sivakumar, K. K., & Rajasekaran, A. (2013). Role of provisional restorations in endodontic therapy. Journal of Pharmacy and Bioallied Sciences, 5, S120-S124, https://doi.org/10.4103/0975-7406.113311
Ejiah, F. N., Fasina, T. M., Familoni, O. B., & Revaprasadu, N. (2017). Synthesis and biological activity of cobalt complexes of aminophenol Schiff bases. Journal of Chemical Society of Nigeria, 42, 93-97
Raczuk, E., Dmochowska, B., Samaszko-Fiertek, J., & Madaj, J. (2022). Different Schiff bases-structure, importance and classification. Molecules, 27, 787, https://doi.org/10.3390/molecules27030787
Tine, M. R. (2012). Cobalt complexes in aqueous solutions as dioxygen carriers. Coordination Chemistry Reviews. 256, 316-327, https://doi.org/10.1016/j.ccr.2011.10.009
Emara, A. A. A., Ali, A. M., El-Asmy, A. F., & Ragab, E-S. (2014). Investigation of the oxygen affinity of manganese(II), cobalt(II) and nickel(II) complexes with some tetradentate Schiff bases. Journal of Saudi Chemical Society, 18, 762-773, https://doi.org/10.1016/j.jscs.2011.08.002
Liu, J., Lorraine, S. C., Dolinar, B. S., & Hoover, J. M. (2022). Aerobic oxidation reactivity of well-defined cobalt(II) and cobalt(III) aminophenol complexes. Inorganic Chemistry, 25, 6008-6016, https://doi.org/10.1021/acs.inorgchem.1c03686
Abd-Elzaher, M. M. (2004). Synthesis, characterization, and antimicrobial activity of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with ferrocenyl Schiff bases containing a phenol moiety. Applied organometallic chemistry, 18, 149-155, https://doi.org/10.1002/aoc.608
Patil, S. A., Unk, S. N., Kulkarni, A. D., Naik, V. H., Kamble, U., & Badami, P. S. (2011). Spectroscopic, in vitro antibacterial, and antifungal studies of Co (II), Ni (II), and Cu (II) complexes with 4-chloro-3-coumarinaldehyde Schiff bases. Journal of Coordination Chemistry, 64, 323-336, https://doi.org/10.1080/00958972.2010.541240
Ali, S., Singh, V., Preeti, J., & Tripathi, V. (2019). Synthesis, antibacterial, anticancer and molecular docking studies of macrocyclic metal complexes of dihydrazide and diketone. Journal of Saudi Chemical Society, 23, 52-60, https://doi.org/10.1016/j.jscs.2018.04.005
Renfrew, A. K., O’Neill, E. S., Hambley, T. W., & New, E. J. (2018). Harnessing the properties of cobalt coordination complexes for biological application. Coordination Chemistry Reviews, 375, 221-233, https://doi.org/10.1016/j.ccr.2017.11.027
Fernandes, L. P., Silva, J. M. B., Martins, D. O. S., Santiago, M. B., Martins, C. H. G., Jardim, A. C. G., & et al. (2020). Fragmentation Study, Dual Anti-Bactericidal and Anti-Viral E ects and Molecular Docking of Cobalt(III) Complexes. International Journal of Molecular Science, 21, 8355, https://doi.org/10.3390/ijms21218355
Fasina, T. M., Ejiah, F. N., Oloba-Whenu, O. A., Revaprasadu, N., & Familoni, O. B. (2017). Synthesis, characterization and structure activity relationship of Schiff bases derived from 2-aminophenol and substituted benzaldehydes. FUW Trends in Science & Technology Journal, 2, 252-256
Bauer, A. W., Kirby, W. N. N., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493-496, https://doi.org/10.1093/ajcp/45.4_ts.493
Jorgensen, J. H., & Ferraro, M. J. (2009). Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical Infectious Diseases, 49, 1749-1755, https://doi.org/10.1086/647952
O’Shaughnessy, M., Hurley, J., Dillon, S. C., Herra, H. C., Pauraic, M., Malachy, M., & et al. (2023). Antibacterial activity of metal-phenanthroline complexes against multidrug resistant Irish clinical isolates: a whole genome sequencing approach. Journal of Biological Inorganic Chemistry, 28, 153-171, https://doi.org/10.1007/s00775-022-01979-8
Eloff, J. N. (1998). A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med, 64, 711-713, https://doi.org/10.1055/s-2006-957563
Rodríguez-Tudela, J. L., Barchiesi, F., Bille, J., Chryssanthou, E., Cuenca-Estrella, M., Denning, D., & et al. (2003). Method for the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeasts. Clinical Microbiology and Infection, 9, 1-8, https://doi.org/10.1046/j.1469-0691.2003.00789.x
Nishat, N., Khan S. A., & Rasool, P. S. (2010). Antimicrobial agents: synthesis, spectral, thermal, and biological aspects of a polymeric Schiff base and its polymer metal(II) complexes. Journal of Coordination Chemistry, 63, 3944 3955, https://doi.org/10.1080/00958972.2010.526207
El-Sonbati, A. Z., El-Mogazy, M. A., Nozha, S. G., Diab, M. A., Abou-Dobara, M. I., Eldesoky, A. M., & et al. (2022). Mixed ligand transition metal(II) complexes: characterization, spectral, electrochemical studies, molecular docking and bacteriological application. Journal of Molecular Structure, 1248, 131498, https://doi.org/10.1016/j.molstruc.2021.131498
Jarząbek, B., Kaczmarczyk, B., & Sęk, D. (2009). Characteristic and spectroscopic properties of the Schiff-base model compounds, Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 74, 949-954, https://doi.org/10.1016/j.saa.2009.08.045
Çetin, Z., & Dede, B. (2023). A novel Schiff base ligand and its metal complexes: Synthesis, characterization, theoretical calculations, catalase-like and catecholase-like enzymatic activities. Journal of Molecular Liquid, 380, 121636
Abd El-Wahab, Z. H. (2007). Mononuclear metal complexes of organic carboxylic acid derivatives: Synthesis, spectroscopic characterization, thermal investigation and antimicrobial activity. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 67, 25-38
Mounika, K., Anupama, B., Pragathi, J., & Gyanakumari, C. (2010). Synthesis¸ characterization and biological activity of a Schiff base derived from 3-ethoxy salicylaldehyde and 2- aminobenzoic acid and its transition metal complexes. Journal of Scientific Research, 2, 513-524
West, B. O. (1962). The magnetic moments and structures of some N-substituted salicylideneimine complexes of cobalt(II). Journal of Chemical Society (Resumed), 260, 1374-1378
Aboaly, M. M., & Khalil, M. M. H. (2001). Synthesis and spectroscopic study of Cu (II), Ni (II), and Co (II), complexes of the ligand salicylaldehyde-2-amino thiophenol. Spectroscopy Letters, 34, 495-504
Tuna, S., Canpolat, E., & Kaya, M. (2006). Synthesis and characterization of a new 4-methoxysalicyliden-p-aminoacetophenoneoxime and its complexes with Co(II), Cu(II) and Zn(II). Polish Journal of Chemistry, 80, 1651-1656
Kashar, T. I., & Aal, S. A. (2021). Spectral, DFT-TDDFT computational investigation and biological studies of transition metal complexes of dehydroacetic acid Schiff base. Journal of Iranian Chemical Society, 18, 1625-1640
Sari, N., Arslan, S., Logoglu, E., & Sakiyan, I. (2003). Antibacterial activities of some amino acid Schiff bases. Gazi University Journal of Science, 16, 283-288
Liew, S. K., Malagobadan, S., Arshad, N. M., Nagoor, N. H. (2020). A Review of the structure-activity relationship of natural and synthetic antimetastatic compounds. Biomolecules, 14, 138
Mohamed, G. G. (2006). Synthesis, characterization and biological activity of bis(phenylimine) Schiff base ligands and their metal complexes. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 64, 188-195
Saritha, T. J., & Metilda, P. (2021). Synthesis, spectroscopic characterization and biological applications of some novel Schiff base transition metal (II) complexes derived from curcumin moiety. Journal of Saudi Chemical Society, 25, 101245
Nora, H. A. (2007). Antimicrobial activity and spectral, magnetic and thermal studies of some transition metal complexes of a Schiff base hydrazone containing a quinoline moiety. Molecules, 12, 1080-1091
Kowalska-Krochmal, B., & Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens, 10, 165
Aligiannis, N., Kalpoutzakis, E., Mitaku, S., & Chinou, I. B. (2001). Composition and antimicrobial activity of the essential oils of two Origanum species. Journal of the Science of Food and Agriculture, 49, 4168-4170
Xiao, Z., Xue, J., Tan, S., Li, H., & Zhu, H. (2007). Synthesis, structure, and structure-activity relationship analysis of enamines as potential antibacterials. Bioorganic and Medicinal Chemistry, 15, 4212- 4219
Aneja, B., Azam, M., Alam, S., Ahmad, P., Ronan, M., Umesh, Y., & et al. (2018). Natural product-based1,2,3-triazole/sulfonate analogues as potential chemotherapeutic agents for bacterial infections. ACS Omega, 3, 6912-6930
Guoa, H-Y., Chenb, Z-A., Shenaand, Q-K., & Quan, Z-S., (2021). Application of triazoles in the structural modification of natural products. Journal of Enzyme Inhibition and Medicinal Chemistry, 36, 1115-1144
Craig, J. S., Melidis, L., Williams, H. D., Dettmer, S. J., Heidecker, A. A., Altmann, P. J., & et al. (2023). Organometallic pillarplexes that bind DNA 4 way holliday Junctions and forks. Journal of American Chemical Society, 145, 13570-13580
Maiti, S. K., Kalita, M., Singh, A., Deka, J., & P. Barman, P. (2020). Investigation of DNA binding and bioactivities of thioether containing Schiff base copper(II), cobalt(II) and palladium(II) complexes: Synthesis, characterization, spectrochemical study, viscosity measurement. Polyhedron, 184, 114559
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Lafia Journal of Scientific and Industrial Research
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.