Enhancing Energy Distribution Efficiency with Dynamic Transformer Rotation in 11kV Networks
DOI :
https://doi.org/10.62050/ljsir2026.v4n1.683Mots-clés :
Transformer Load Allocation, Energy Distribution Efficiency, 11kV Distribution Network, Dynamic Transformer Assignment, Transformer Overload Management, Optimization FrameworkRésumé
This study presents the optimisation of transformer-to-feeder load allocation within an 11kV distribution network to improve energy distribution efficiency, minimise transformer overload, and enhance system balance. The analysis utilised over five years of energy consumption data for three 11kV feeders: Auchi Town, Igbei Road, and GRA, supported by five transformers of varying capacities (30 MVA, 15 MVA, and 40 MVA units), with the largest introduced in 2021. A simulation framework using MATLAB and a Genetic Algorithm (GA) was developed to dynamically optimise transformer assignments based on feeder demand, transformer capacity, and operational constraints. Performance evaluation focused on the energy loss proxy, transformer overload occurrence, and maximum per-unit loading. The optimised configuration introduced reassignment, leading to balanced capacity utilisation. The GA reached an optimal solution zone rapidly, stabilising by the 61st generation with a consistent best fitness value of 1012.03, suggesting the methodology is both robust and practical. Transformer overloads were completely avoided in both baseline and optimised allocations, confirming assignments remained within rated limits. Loss proxy values under the optimised configuration increased slightly, reflecting broader transformer engagement, while maximum per-unit loading values remained safely below critical thresholds. Compared to the baseline's fixed pairings, the optimised structure provided improved asset utilisation and greater operational flexibility. The recommendations include integrating the model with existing SCADA systems for real-time deployment, incorporating operational switching costs into the optimisation function, and exploring scalability for larger networks to transition this research into a fully deployable power management solution.##plugins.themes.default.displayStats.downloads##
Références
Adesina, L. M., Ogunbiyi, O., & Jimada-Ojuolape, B. (2024). Comparative analysis of the reliability assessment of commercial and residential feeders in the power distribution utility of Nigeria. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 9(2024), 100651. https://doi.org/10.1016/j.prime.2024.100651
Agrawal, A. K., Nehra, H., Shakya, A., Verma, A., Chokhani, A., Sahu, S. K., & Paliwal, P. (2025). Analysis of Voltage and Load profiles of a rural distribution Feeder in Madhya Pradesh. 2025 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS). Bhopal, India: IEEE. https://doi.org/10.1109/SCEECS64059.2025.10940348
ALqazan, M. S., Ammar, M. B., Kherallah, M., & Kammoun, F. (2024). Performance Evaluation and Real-world Challenges of IoT-Based Smart Fuel Filling Systems with Embedded Intelligence. Fusion: Practice and Applications, 14(2), 56-67. https://doi.org/10.54216/FPA.140204
Azmi, K. H., Radzi, N. A., Azhar, N. A., Samidi, F. S., Zulkifli, I. T., & Zainal, A. M. (2022). Active electric distribution network: applications, challenges, and opportunities. IEEE Access, 10(1), 134655-134689. https://doi.org/10.1109/ACCESS.2022.3229328
Chandra Mahato, G., Roy Choudhury, T., & Nayak, B. (2024). Investigation on life span assessment of PV system components under FPPT/MPPT operation. Electrical Engineering, 106(5), 5339-5354. https://doi.org/10.1007/s00202-024-02287-x
Fose, N., Singh, A. R., Krishnamurthy, S., Ratshitanga, M., & Moodley, P. (2024). Empowering distribution system operators: A review of distributed energy resource forecasting techniques. Heliyon, 10(15), 1-27. https://doi.org/10.1016/j.heliyon.2024.e34800
Haider, Z. M., Mehmood, K. K., Khan, S. U., Khan, M. O., Wadood, A., & Rhee, S.-B. (2021). Optimal management of a distribution feeder during contingency and overload conditions by harnessing the flexibility of smart loads. IEEE Access, 9, 40124-40139. https://doi.org/10.1109/ACCESS.2021.3064895
Honrubia-Escribano, A., Villena-Ruiz, R., Artigao, E., Gomez-Lazaro, E., & Morales, A. (2021). Advanced teaching method for learning power system operation based on load flow simulations. Computer Applications in Engineering Education, 29(6), 1743-1756. https://doi.org/10.1002/cae.22420
Kebede, S. M. (2023). Reliability Improvement Using Optimally Placed Distribution Generator: the case of 15kv Dire Dawa University Feeder. Haramaya University.
Kirange, Y. K., Patil, V., Patil, R. S., Patil, R. J., & Pandit, P. D. (2024). Optimizing power distribution: Smart load sharing mechanism enhanced by arduino uno integration. International Journal of Ingenious Research, Invention and Development, 10(3), 161-174. https://doi.org/10.5281/zenodo.11120707
Madueme, T. C., & Onyegbadue, I. A. (2019). OPTIMIZATION OF THE NIGERIA ELECTRIC POWER SYSTEM. International Journal of Engineering and Emerging Scientific Discovery, 3(2), 82-94.
Mohammed, O. O., Otuoze, A., Salisu, S., Abioye, A., Usman, A., & Alao, R. (2020). The challenges and panaceas to power distribution losses in Nigeria: Nigeria power system distribution system technical losses non-technical losses. Arid Zone Journal of Engineering, Technology and Environment, 16(1), 120-136.
Okeke, R. O., Ibokette, A. I., Ijiga, O. M., Enyejo, L. A., Ebiega, G. I., & Olumubo, O. M. (2024). The reliability assessment of power transformers. Engineering Science & Technology journal, 5(4), 1149-1172. https://doi.org/10.51594/estj/v5i4.981
Omorodion, I., Onyegbadue, I., & Izilein, F. (2025). Optimising Power Flow in Transmission Networks: A Comparative Study of Genetic Algorithm and Particle Swarm Optimisation Approaches. Journal of Systematic, Evaluation and Diversity Engineering, 9(5), 72-97. https://doi.org/10.70382/ajsede.v9i5.017
Onyegbadue, I. A., Ukagu, S. N., & Okonkwo, D. O. (2024). Voltage Stability Assessment of Nigeria 330 kV Power Grid: A Critical Bus Perspective. UNIZIK Journal of Engineering and Applied Sciences, 3(5), 1382-1401.
Onyegbadue, I., Ogbuka, C., & Madueme, T. (2022). Robust least square approach for optimal development of quadratic fuel quantity function for steam power stations. Indonesian Journal of Electrical Engineering and Computer Science, 25(2), 732-740. https://doi.org/10.11591/ijeecs.v25.i2.pp732-740
Pandit, N., & Ganesan, E. (2022). Challenges Faced in performing Energy Audit of 11kV Feeder and Distribution Transformer: A Study on Energy Management. Journal of Algebraic Statistics, 13(3), 5351-5366.
Petri, T., Keller, M., & Parspour, N. (2022). The insulation resilience of inverter-fed low voltage traction machines: Review, challenges, and opportunities. IEEE Access, 10, 104023-104049. https://doi.org/10.1109/ACCESS.2022.3210348
Shahinzadeh, H., Moradi, J., Gharehpetian, G. B., Nafisi, H., & Abedi, M. (2019). Internet of Energy (IoE) in smart power systems. 2019 5th conference on knowledge based engineering and innovation (KBEI) (pp. 627-636). Tehran, Iran: IEEE. https://doi.org/10.1109/KBEI.2019.8735086
Shakil, M., Rashid, Z., Hussain, G., & Umer, F. (2020). Power flow analysis and optimization in ring distribution network of Bahawalpur using Newton Raphson method. Indian Journal of Science and Technology, 13(27), 2720-2732. https://doi.org/10.17485/IJST/v13i27.916
Suberu, M. Y., Guiawa, M., Onyegbadue, I. A., & Funsho, O. (2024). Techno-Economic Optimization of Clean Energy Hybrid Systems in the Context of Assorted Battery Storage Technologies. African Journal of Environmental Sciences and Renewable Energy, 15(1), 170-169.
Tarmanini, C., Sarma, N., Gezegin, C., & Ozgonenel, O. (2023). Short term load forecasting based on ARIMA and ANN approaches. Energy Reports, 9(3), 550-557. https://doi.org/10.1016/j.egyr.2023.01.060
Ukagu, S. N., Atu, M., & Onyegbadue, I. A. (2025). Energy Storage: The Key to Reliable Renewable Energy Grids. ARID ZONE JOURNAL OF ENGINEERING, TECHNOLOGY AND ENVIRONMENT, 21(2), 389-400. https://doi.org/10.63958/azojete/2025/21/02/007
Vujanovic, M., Wang, Q., Mohsen, M., Duic, N., & Yan, J. (2021). Recent progress in sustainable energy-efficient technologies and environmental impacts on energy systems. Applied Energy, 283, 116280. https://doi.org/10.1016/j.apenergy.2020.116280
Wang, C., Wang, Y., Ding, Z., Zheng, T., Hu, J., & Zhang, K. (2022). A transformer-based method of multienergy load forecasting in integrated energy system. IEEE Transactions on Smart Grid, 13(4), 2703-2714. https://doi.org/10.1109/TSG.2022.3166600
Zografopoulos, I., Srivastava, A., Konstantinou, C., Zhao, J., Jahromi, A. A., Chawla, A., . . . Teng, F. (2025). Cyber-physical interdependence for power system operation and control. IEEE Transactions on Smart Grid, 16(3), 2554-2573. https://doi.org/10.1109/TSG.2025.3538012
Téléchargements
Publiée
Numéro
Rubrique
Licence
(c) Copyright Jewel Idehen, Dennis Okonkwo, Michael Atu, Ikenna Onyegbadue (Author) 2026

Ce travail est disponible sous licence Creative Commons Attribution - Partage dans les Mêmes Conditions 4.0 International.

