Thermal and Structural Analysis of Airborne Magnetic Data of part of Nasarawa State, Nigeria: Implication for Geothermal Energy Exploration

Authors

  • Oladiran Johnson Abimbola Faculty of Science, Federal University of Lafia Author
  • Taiwo Adewumi Department of Physics, Faculty of Science, Federal University of Lafia, Nigeria Author
  • Hauwa Onyeka Iyima Department of Physics, Faculty of Science, Federal University of Lafia, Nigeria Author
  • Fidelis Iorzua Kwaghhua Department of Geophysics, School of Physical Science, Federal University of Technology Minna Author

DOI:

https://doi.org/10.62050/ljsir2024.v2n2.392

Keywords:

Geothermal energy, heat flow, Curie point depth, renewable energy

Abstract

This study presents the results of thermal and structural analysis of airborne magnetic data of part of Nasarawa State, Nigeria. The study area is characterised by a complex geological setting, with numerous faults and fractures that may control geothermal activity. The Total Magnetic Intensity (TMI) of the study area was analysed using various techniques, including spectral analysis, Analytic signal (AS), Center for Exploration Targeting (CET), First vertical derivative (FVD), and second vertical derivative (SVD). The results of the CET, FVD, and SVD reveal a complex geological structural pattern, with numerous faults and fractures that may be related geothermal activity, trending majorly NE-SW direction. The AS map distinguished regions of high, intermediate, and low amplitude anomalies within the study area. The thermal analysis evaluated Curie point depth (CPD), geothermal gradient (GG), and heat flow (HF). Estimated values of CPD, GG, and HF range from 10 to 22.65 km, 25 to 55 °C/km, and 60 to 140 mW/m2, respectively. Feasible HF for geothermal resources were observed at the mid-portion of the northern region, corresponding to Mada, Nasarawa Egon, Akwanga, and at the western and south-eastern edges, covering Udeni and Keana. The delineated major structures in NE-SW direction might serve as migration conduits and channels for crustal HF within the study area. The results of this study have significant implications for geothermal exploration in the study area, and suggest that further investigation is warranted to determine the feasibility of geothermal energy production.

Downloads

Download data is not yet available.

References

Abdullahi, M., & Kumar, R. (2020). Curie depth estimated from high-resolution aeromagnetic data of parts of lower and middle Benue trough (Nigeria). Acta Geodaetica et Geophysica, 55(4), 627-643.

Abdullahi, M., Valdon, Y. B., Andrew, F. P., & Idi, B. Y. (2023). Curie Depth and Surface Heat Flow Estimation from Anomalous Magnetic Blocks in the Lower and Part of Middle Benue Trough and Anambra Basin. Earth and Planetary Science, 2(1), 11-20.

Abdelrahman, K., Ekwok, S. E., Ulem, C. A., Eldosouky, A. M., Al-Otaibi, N., Hazaea, B. Y., ... & Akpan, A. E. (2023). Exploratory mapping of the geothermal anomalies in the Neoproterozoic Arabian Shield, Saudi Arabia, using magnetic data. Minerals, 13(5), 694.

Adedapo, J.O., Kurowska, E., Schoeneich, K., Ikpokonte, A. (2013). E.Geothermal gradient of the Niger Delta from recent studies. International Journal of Scientific and Engineering Research 4(11):1-5.

Adetona, A. A., Fidelis, I. K., & Shakarit, B. A. (2023). Interpreting the magnetic signatures and radiometric indicators within Kogi State, Nigeria for economic resources. Geosystems and Geoenvironment, 2(2), 100157.

Adetona, A. A., Rafiu, A. A., Aliyu, B. S., John, M. K., & Kwaghhua, I. F. (2024). Estimating the Heat Flow, Geothermal Gradient and Radiogenic Heat within the Young Granites of Jos Plateau North Central Nigeria. Journal of the Earth and Space Physics, 49(4). https://jesphys.ut.ac.ir/article_95497.html

Adewumi, T., Salako, K.A., Adediran, O.S., Okwoko, O.I., Sanusi Y.A. (2019). Curie point Depth and Heat Flow Analyses over Part of Bida Basin, North Central Nigeria using Aeromagnetic Data. Journal of Earth Energy Engineering. JEEE Vol. 8 No. 1/2019. ISSN 2540 – 9352

Adewumi, T., Salako, K. A., Usman, A. D., & Udensi, E. E. (2021). Heat flow analyses over Bornu Basin and its environs, Northeast Nigeria, using airborne magnetic and radiometric data: implication for geothermal energy prospecting. Arabian Journal of Geosciences, 14, 1-19.

Adewumi, T., & Salako, K. A. (2018). Delineation of mineral potential zone using high resolution aeromagnetic data over part of Nasarawa State, North Central, Nigeria. Egyptian Journal of petroleum, 27(4), 759-767.

Airo, M. (2002). Aeromagnetic and Aeroradiometric Response to Hydrothermal Alteration. Surveys in Geophysics. 23. 273-302. https://doi.org/10.1023/A:1015556614694.

Airo, M., Marit W., 2010. Application of regional aeromagnetic data in targeting detailed fracture zones. Journal of Applied Geophysics Volume 71, Issues 2–3, June 2010, Pages 62-70 https://doi.org/10.1016/j.jappgeo.2010.03.003

Akinyemi, L., Zui, V. I. (2019). Summary of heat flow studies in Nigeria. J. Belarusian State Univ. Geogr. Geol. 2, 121–132. https://doi.org/10.33581/2521-6740-2019-2-121-132

Alfaifi, H. J., Ekwok, S. E., Ulem, C. A., Eldosouky, A. M., Qaysi, S., Andráš, P., & Akpan, A. E. (2023). Exploratory assessment of geothermal resources in some parts of the Middle Benue Trough of Nigeria using airborne potential field data. Journal of King Saud University-Science, 35(2), 102521.

Anudu, G. K., Onuba, L. N., Onwuemesi, A. G., & Ikpokonte, A. E. (2012). Analysis of aeromagnetic data over Wamba and its adjoining areas in north-central Nigeria. Earth Sciences Research Journal, 16(1), 25-33.

Bako A. S. J. (2010). Geothermal energy potential in the part of middle benue trough located in Nasarawa state. A thesis submitted to the postgraduate school, Ahmadu Bello University, Zaria, Nigeria.

Bhattacharyya, B. K., & Leu, L. K. (1977). Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies. Geophysics, 42(1), 41-50.

Bhattacharyya, B. K., & Leu, L. K. (1975). Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures. Geophysics, 40(6), 993-1013.

Blakely, R. J. (1996). Potential theory in gravity and magnetic applications. Cambridge university press.

Cull, J.P., Conley, D., 1983. Geothermal gradients and heat flow in Australian sedi-mentary basin. J. Aust. Geol. Geophys. 8, 32–337.

Čermák, V., & Rybach, L. (1982). Thermal conductivity and specific heat of minerals and rocks. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group V (Geophysics and Space Research), Volume Ia,(Physical Properties of Rocks), edited by G. Angenheister, Springer, Berlin-Heidelberg, 305-343.

Debeglia, N., & Corpel, J. (1997). Automatic 3-D interpretation of potential field data using analytic signal derivatives. Geophysics, 62(1), 87-96.

Dopamu, K. O., Akoshile, C. O., & Nwankwo, L. I. (2021). Regional estimation of geothermal resources of the entire Benue Trough, Nigeria using high-resolution aeromagnetic data. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 7, 1-17.

Eletta, B. E., & Udensi, E. E. (2012). Investigation of the Curie point isotherm from the magnetic fields of eastern sector of central Nigeria. Geosciences, 2(4), 101-106.

Ekwok, S. E., Akpan, A. E., Ebong, E. D., & Eze, O. E. (2021). Assessment of depth to magnetic sources using high resolution aeromagnetic data of some parts of the Lower Benue Trough and adjoining areas, Southeast Nigeria. Advances in Space Research, 67(7), 2104-2119.

Haack, U. (1982). Radioactivity of rocks. In: Hellwege, K. (Ed.), Landolt-Bo¨rnstein Numerical Data and Functional Relationships in Science and Technology. New Series, Group V. Geophysics and Space Research, vol. 1, Physical properties of rocks, supvolume b. Springer-Verlag, Berlin, Heidelberg, New York, pp. 433–481.

Jessop A. M. (1976) Geothermal energy from sedimentary basins. United State Department of Energy Office of Scientific and Technical Information. NP. 22308. EDB-77-131177

Korenaga, J. (2011). Clairvoyant geoneutrinos. Nature Geoscience, 4(9), 581-582.

Kuforijimi, O., & Christopher, A. (2017). Correlation and mapping of geothermal and radioactive heat production from the Anambra Basin, Nigeria. African Journal of Environmental Science and Technology. Vol. 11(10), pp. 517-531. https://doi.org/10.5897/AJEST2017.2382

Lay, T., Hernlund, J., & Buffett, B. A. (2008). Core–mantle boundary heat flow. Nature geoscience, 1(1), 25-32.

Megwara, J. U., Udensi, E. E., Olasehinde, P. I., Daniyan, M. A., & Lawal, K. M. (2013). Geothermal and radioactive heat studies of parts of southern Bida basin, Nigeria and the surrounding basement rocks. Int J Basic Appl Sci, 2(1), 125-139.

Melouah, O., Ebong, E. D., Abdelrahman, K., & Eldosouky, A. M. (2023). Lithospheric structural dynamics and geothermal modeling of the Western Arabian Shield. Scientific Reports, 13(1), 11764.

Nigeria Geological Survey Agency, 2009. Geological map of Nigeria https://ngsa.gov.ng/geological-maps

Ngene, T., Mukhopadhyay, M., & Ampana, S. (2022). Reconnaissance investigation of geothermal resources in parts of the Middle Benue Trough, Nigeria using remote sensing and geophysical methods. Energy Geoscience, 3(4), 360-371.

Nwajide, C. S. (1990). Cretaceous sedimentation and paleogeography of the central Benue Trough. The Benue. Tough structure and Evolution International Monograph Series, Braunschweig, 19-38.

Obaje, N. G. (2009). Geology and mineral resources of Nigeria (Vol. 120, p. 221). Berlin: Springer.

Offodile, M. E. (1976). The geology of the Middle Benue, Nigeria. Palaentological Institute, University Uppsala, Special Publication 4:pp 1–166

Okubo, Y., Graf, R. J., Hansen, R. O., Ogawa, K., & Tsu, H. (1985). Curie point depths of the island of Kyushu and surrounding areas, Japan. Geophysics, 50(3), 481-494.

Paterson, N. R., & Reeves, C. V. (1985). Applications of gravity and magnetic surveys; the state-of-the-art in 1985. Geophysics, 50(12), 2558-2594. https://doi.org/10.1190/1.1441884

Ravat, D., Pignatelli, A., Nicolosi, I., Chiappini, M., 2007. A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophysical Journal International. 169, 421–434 https://doi.org/10.1111/j.1365-246X.2007.03305.x

Roest, W. R., Verhoef, J., & Pilkington, M. (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116-125.

Salako, K.A., Adetona, A.A., Rafiu, A.A., Alahassan, U.D., Aliyu, A., & Adewumi, T., (2020). Assessment of Geothermal Potential of Parts of Middle Benue Trough, North-East Nigeria. Journal of the Earth and Space Physics, Vol. 45, No. 4. https://doi.org/10.22059/jesphys.2019.260257.1007017

Schmeling, H., Marquart, G., Weinberg, R., & Wallner, H. (2019). Modelling melting and melt segregation by two-phase flow: new insights into the dynamics of magmatic systems in the continental crust. Geophysical Journal International, 217(1), 422-450.

Spector, A., & Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, 35(2), 293-302.

Stacey, F. D. (1977). A thermal model of the Earth. Physics of the Earth and Planetary Interiors, 15(4), 341-348.

Tanaka, A., Okubo, Y., & Matsubayashi, O. (1999). Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics, 306(3-4), 461-470.

Trifonova, P., Zhelev, Z., Petrova, T., & Bojadgieva, K. (2009). Curie point depths of Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity. Tectonophysics, 473(3-4), 362-374.

Front

Published

2024-09-03

How to Cite

Thermal and Structural Analysis of Airborne Magnetic Data of part of Nasarawa State, Nigeria: Implication for Geothermal Energy Exploration. (2024). Lafia Journal of Scientific and Industrial Research, 2(2), 145-154. https://doi.org/10.62050/ljsir2024.v2n2.392

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.