Comparative Studies on Nutritive and Antinutritive Values of Cowpea (Vigna unguiculata L. Walp) and Rice (Oryza sativa L.)

Authors

  • Matthew Olaleke Aremu Department of Chemistry, Federal University of Lafia, P.M.B. 146, Nasarawa State, Nigeria Author
  • Ruth Linus Edem Department of Chemistry, Federal University of Lafia, P.M.B. 146, Nasarawa State, Nigeria Author
  • Stephen Olaide Aremu Faculty of General Medicine, Siberian State Medical University, Tomsk, Russian Federation Author
  • Stella Chintua Ortutu Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka, Nigeria Author
  • Edward Bebe Ayakeme Department of Chemistry, Federal University of Lafia, P.M.B. 146, Nasarawa State, Nigeria Author
  • Ijeoma Maureen Enyioha Department of CNAI, Nigerian Security and Civil Defence, Imo State Command Author
  • Hamza Ibrahim Muhammad Department of Chemistry, Federal University of Lafia, P.M.B. 146, Nasarawa State, Nigeria Author
  • Blessing Chidi Obasi Department of Food Science & Technology, Federal University Wukari, Taraba State, Nigeria Author

DOI:

https://doi.org/10.62050/ljsir2024.v2n2.322

Keywords:

Antinutritional factors, cowpea, minerals, proximate, rice

Abstract

The study was carried out on proximate, mineral and antinutritional compositions of cowpea (Vigna unguiculata L. Walp) and rice (Oryza sativa L.) in order to compare the nutritional and antinutritional composition of these two important food crops. The standard analytical techniques were used for all the determinations and analyses. The calculated parameters were metabolized energy, mineral safety index (MSI), mineral ratios of some minerals. The results of the proximate composition (%) revealed that crude fat (2.46 ± 0.07), moisture (5.85 ± 0.03) and total energy (1539.25 kj/100g) contents were higher for rice than cowpea (1.61 ± 0.06, 4.58 ± 0.10 and 1489.27 kj/100g), respectively while cowpea had higher level of crude protein (10.10 ± 0.14) and crude fiber (4.67 ± 0.17) than the crude protein (9.10±0.13) and crude fibre (2.37±0.08) of rice. No mineral had a deleterious value in the MSI because they had their table value (TV) > calculated value (CV). The phytate, tannin and oxalate concentrations were higher in rice (90.08±0.52 %, 6.01±0.01 mg/100g and 5.05±0.18 %) compared with that of the cowpea (40.45±2.68 %, 3.11±0.08 mg/100g and 4.37±0.09 %) while cowpea had higher concentrations in total phenol (24.79±2.55 %) and flavonoids (4.55±0.07 %) than rice. Antinutritional analysis showed that rice had higher levels of phytic acid and tannins, which can reduce the bioavailability of minerals, while flavonoids were higher in cowpea. This study concludes that both rice and cowpea are important sources of nutrients and should be consumed in combination to ensure a balanced diet. 

Downloads

Download data is not yet available.

References

Pirman, T., Stibily, V., Stekar, J.M.A. and Combe, E. (2001). Amino Acid Composition of Beans and Lentil. Zb. Biotech. Fak. Univ. Ljubl.,Kmet. Zootech, 78 (1). 57 – 68. htt://www.Bfro.uni-ly.sio/zoo/publikacije/zbornik/.

Muranaka, S., Shono, M., Myoda, T., Takeuchi, J., Franco, J., Nakazawa, Y. and Takagi, H. (2016). Genetic diversity of physical, nutritional and functional properties of cowpea grain and relationships among the traits. Plant Genetic Resources. 14. 67-76. https://doi.org/:10.1017/S147926211500009X

Minussi, R.C., Rossi, M. Bologna, L. Cordi, L. Rotilio, D. and Pastore, G.M. (2003). Phenolic compounds and total antioxidant potential of commercial wines. Food Chem. 82. 409-416. https://doi.org/10.1016/S0308-8146(02)00590-3

FAO. (2018). Nutrient sources – composition of feedstuff and fertilizers. Food and Agricultural Organization of the United Nations, Italy www.fao.org.

Lema, M. (2018). Application of biotechnology on rice (Oryzae sativa) Improvement: Review article. Modern Concepts & Developments in Agronomy 2. 1–8. https://doi.org/10.31031/MCDA.2018.02.000532

Oxford Dictionary of Biochemical and Molecular Biology (2006). Antinutrients. Retrieved from https://www.googlescholar.com/antinutrients

Afiukwa, C. A., Igwenyi, I. O., Ogah, O. and Ugwu, O. O. (2011). Variations in seed phytic and oxalic acid contents among Nigerian cowpea accessions and their relationship with grain yield. Continental Journal of Food Science and Technology, 5(2). 40-48. https://www.cabidigitallibrary.org/doi/full/10.5555/20123237729

Pihlanto, A., Mattila, P., Mäkinen, S. and Pajari, A. M. (2017). Bioactivities of alternative protein sources and their potential health benefits. Food and Function, 8. 3443–3458. https://doi.org/10.1039/C7FO00302A

AOAC (Association of Official Analytical Chemists), (2006). Official Method of Analyst AOAC (W. Horwitz Editor) Eighteenth Edition. Washighton D.C, AOAC.

Aremu, M. O., Olaofe, O., Basu, S. K., Abdulazeez, G., & Acharya, S. N. (2010). Processed cranberry bean (Phaseolus coccineus L.) seed flour for the African diet. Canadian Journal of Plant Science, 90(5). 719-728. https://doi.org/10.4141/cjps09149.

Otemuyiwa, I. O., Falade, O.S. and Adewusi, S.R.A. (2018). Effect of various cooking methods on the proximate composition and nutrient contents of different rice varieties grown in Nigeria. International Food Research Journal. 25(2). 747-754. http://www.ifrj.upm.edu.my/25%20(02)%202018/(42).pdf

Oko, A. O., Onyekwere, S. C. (2010). Studies on the proximate chemical composition and mineral element contents of five new lowland rice varieties in Ebonyi State. Int J Biotechnol Biochem, 6(6): 949–95. https://www.researchgate.net/publication/312469845_Studies_on_the_proximate_chemical_composition_and_mineral_element_contents_of_five_new_lowland_rice_varieties_planted_in_Ibonyi_state

Oyewole, A. C. (2007). Effect of cooking and soaking on physical characteristics, nutrient composition and sensory evaluation of indigenous and foreign rice varieties in Nigeria. Nigerian Afr. J. Biotechnology, 6(8): 1016-1020. https://www.ajol.info/index.php/ajb/article/view/57040

Fari, M. J. M., Rajapaksa, D., Ranaweera, K. K. D S. (2011). Quality characteristics of noodles made from selected varieties of Sri Lankan rice with different physicochemical characteristics. J Nat Sci Found Sri Lanka, 39(1): 53–60. https://doi.org/10.4038/jnsfsr.v39i1.2923.

Rohman, A., Helmiyati, S., Hapsari, M., LarasatiSetyaningrum, D. Rice in health and nutrition. Int Food s J. 2014.21(1):p. 13–24. chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http://www.ifrj.upm.edu.my/21%20(01)%202014/2%20IFRJ%2021%20(01)%202014%20Rohman%20430.pdf

Olaofe, O., Aremu, M. O. & Okiribiti, B.Y. (2008). Chemical evaluation of the nutritive value of smooth luffa (Luffa cylindrica) seed‟s kernel. Electronic Journal of Environmental and Agricultural Food Chemistry, 7(10), 3444 – 3452. https://www.researchgate.net/publication/287463656_Chemical_evaluation_of_the_nutritive_value_of_smooth_luffa_Luffa_Cylindrica_seed's_kernel

Aremu, M. O., Bamidele, T. O., Nweze, C. C. & Idris, I. M. (2012). Chemical evaluation of pride of barbados (Caesalpinia pulcherrima) seeds grown in Gudi, Nasarawa State, Nigeria. Int. J. Chem. Sci., 5(1): 29 – 34. https://www.researchgate.net/publication/316646307_Chemical_evaluation_of_pride_of_Barbados_Caesalpina_pulcherrima_seeds_grown_in_Gudi_Nasarawa_State_Nigeria

Siddhuraju, P., Vijayakumari, K. & Janardhanan, K. (1996). Chemical composition and protein quality of the little–known legume, velvet bean (Mucuna pruriens L.). J. Agric Food Chem., 44, 2636–2641. https://doi.org/10.1021/jf950776x

Audu, S. S. & Aremu, M. O. (2011). Nutritional composition of raw and processed pinto bean (Phaseolus vulgaris L.) grown in Nigeria. J. Food, Agric. & Environ., 9(3&4), 72–80. https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/4674523

Aremu, M. O., Olaofe, O. & Akintayo, E. T. (2006). Compositional evaluation of cowpea (Vigna unguiculata) varieties and scarlet runner bean (Phaseolus coccineus) varieties flour, J. Food, Agric. & Environ., 4(2), 39–43. https://www.researchgate.net/publication/265888264_Compositional_evaluation_of_cowpea_Vigna_unguiculata_and_scarlet_runner_bean_Phaseolus_coccineus_varieties_grown_in_Nigeria

Ogunlade, I., Olaofe, O. & Fadare, T. (2005). Chemical composition, amino acid and functional properties of Leucaena leucocepha seeds flour. Nigeria J. Appl. Sci., 21, 7–12. https://www.cabidigitallibrary.org/doi/full/10.5555/20053097366

Nieman, D. C., Butterworth, D. E. & Nieman, C. N. (1992). Nutrition. Wm. C. Brown Publishers, Dubuque, I. A. 540p. https://www.sciepub.com/reference/51349

Aremu, M. O., Andrew, C., Oko, O. J., Odoh, R., Zando, C., Usman A. and Akpomie, T. (2022). Comparative studies on the physicochemical characteristics and lipid contents of desert date (Balanites aegyptiaca (L.) Del) kernel and pulp oils. European Journal of Nutrition & Food Safety, 14(1): 20–30. https://doi.org/10.9734/ejnfs/2022/v14i130473.

Robinson, D. E. (1987). Food Biochemistry and Nutritional Value. Longman Scientific and Technology, Burnmell, Haslow, England, pp. 327 – 328. https://www.sciepub.com/reference/140488

FAO (1970). List of Foods Used in Agriculture, Nutritional Information Document Series Number 2, Food and Agriculture Organization of the United Nations, Rome, Italy, p. 45.

Audu, S. S., Aremu, M. O. & Lajide, L. (2013). Effects of processing on physicochemical and antinutritional properties of black turtle bean (Phaseolus vulgaris L.) seeds flour. Oriental J. Chem., 29(3): 979 – 989. http://dx.doi.org/10.13005/ojc/290318

Adesina, A. J. & Adeyeye, E. I. (2012). The proximate and mineral composition of fatted and defatted marble vine seeds. Proceedings of the 36th Annual Conference of NIFST, 15–19 October, EKO 2012, 225–226. https://www.researchgate.net/publication/278613038_The_proximate_and_mineral_composition_of_fatted_and_defatted_Marble_Vine_seed

Coe, F.L., Evan, A. and Worcester, E. Kidney stone disease. (2005). J. Clin. Invest, 115(10): 2598 – 2608. https://doi.org/10.1172/JCI26662.

Soetan, K. O. and Oyewole, O. E. (2009). The need for adequate processing to reduce the antinutritional factors in plants used as human foods and animal feeds: A review. African Journal of Food Science, 3(9): 223-232. https://www.cabidigitallibrary.org/doi/full/10.5555/20103303602

Singh, B., Singh, J. P., Singh, N., Kaur, A. (2017). Saponins in pulses and their health promoting activities: A Review. Food Chemistry, 233: 540–549. https://doi.org/10.1016/j.foodchem.2017.04.161

Parikh, M., Netticadan, T. and Pierce, G. N. (2018). Flaxseed: Its bioactive components and their cardiovascular benefits. American Journal of Physiology, Heart and Circulatory Physiology, 313: 146–159. https://doi.org/10.1152/ajpheart.00400.2017

Aremu, M. O., Ibrahim, H. & Ekanem, B. E. (2016). Effect of processing on in–vitro protein digestibility and anti– nutritional properties of three underutilized legumes grown in Nigeria. British Biotechnology Journal, 14(1), 1 – 10. https://doi.org/10.9734/BBJ/2016/22581

Ijeomah, A. U., Ugwuona, F. U. & Ibrahim, Y. (2012). Nutrient composition of three commonly consumed indigenous vegetables of north-central Nigeria. Nigerian Journal of Agriculture, Food and Environment, 8(1): 17 – 21.

Aliyu, S. B., Aremu, M. O., Onwuka, J. C., Passali, D. B. (2023). Nutritive and antinutritive values of fermented guinea corn (Sorghum bicolor L.) fortified with bambara groundnut (Vigna subterranea L.) flour. Lafia Journal of Scientific and Industrial Research, 1(2): 15–21. https://doi.org/10.62050/ljsir.2023.v1n2.268.

Silva, E. O. and Bracarense, A. P. (2016). Phytic acid: from antinutritional to multiple protection factor of organic systems. Journal of Food Science, 81: 1357–1362. https://doi.org/10.1111/1750-3841.13320

Beans

Downloads

Published

2024-06-08

How to Cite

Comparative Studies on Nutritive and Antinutritive Values of Cowpea (Vigna unguiculata L. Walp) and Rice (Oryza sativa L.). (2024). Lafia Journal of Scientific and Industrial Research, 2(2), 40-45. https://doi.org/10.62050/ljsir2024.v2n2.322

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.