Fatty Acid Profiles, Physicochemical Characteristics and Phytosterols of Three Underexploited Fruit Kernels and Pulps from North-East, Nigeria
DOI:
https://doi.org/10.62050/ljsir2026.v4n1.700Keywords:
Fatty acids, physicochemical properties, phytosterols, underexploited fruitsAbstract
This paper examines the fatty-acid profiles, physicochemical properties, functional lipid indices and phytosterol composition of oils in the kernels and pulps of three underexploited fruits namely; Hyphaene thebaica (Doum palm), Diospyros mespiliformis (Jackal-berry), and Detarium senegalense (Sweet detar) as found in North-East Nigeria. The standard analytical techniques were used for different analyses. Physicochemical measurements indicated obvious species- and tissue-specific differences, Doum palm kernel having the highest acid and viscosity, and peroxide levels were low in all samples, meaning there were minimal oxidative damages. The oils were anaesthetized by colour parameters (CIELAB) as being light, with mild rates of the green-yellow liquids and sample-specific brightness. The fatty-acid analysis showed the highest level of myristic acid (8.27 %) in jackal-berry kernel and the highest content of oleic acid (30.20 %) in sweet detar pulp. Linoleic and α-linolenic acids were present in physiologically relevant amounts, the highest values recorded in jackal–berry pulp (28.50 %) and jackal–berry kernel (16.83 %), respectively. The quality of lipid indices showed positive nutritional profiles with MUFA/SFA and PUFA/SFA ratios being over 1.00 with low atherogenicity and thrombogenicity indices and ω-6/ω-3 ratios in the anti-inflammatory range values. Phytostersol analysis revealed that sweet detar pulp has the highest sitosterol (0.823 mg/100 g) and ergosterol (0.653 mg/100 g); doum kernels showed high level of campesterol (0.747 mg/100 g) and avenasterol (0.83 mg/100 g). Generally, these results highlighted the nutritional value, biochemical composition, and functional prospects of these underexploited fruit oils, thereby recommending them as foods, nutraceutical and cosmetic ingredients.
Downloads
References
Aremu, M. O., Ambo, A. I., Onwuka, J. C., Akpomie, T. E. and Omotehinwa, H. F. (2025). Assessment of fatty acids profile and sugar content of African black pear (Dacryodes edulis) kernel and pulp of the fruit. Bangladesh Journal of Science and Industrial Research, 60(2): 73–82, https://doi.org/10.37933/bjsir.v60i2.78348.
Dogara, S. U. (2022). Nutritional and functional potential of wild and semi-domesticated fruits in North-East Nigeria. Journal of Food Science and Nutrition, 8(2), 45–53.
Saber, N., Mohamed, E., & El-Halim, F. (2022). Physicochemical properties and fatty acid composition of underutilised fruit seed oils. Journal of Food Science and Technology, 59(9), 3492–3501. https://doi.org/10.1007/s13197-022-05302-0
Ebbo, P., Adamu, H., & Abubakar, M. (2014). Ethnobotanical survey and preliminary phytochemical screening of Diospyros mespiliformis in Northern Nigeria. Journal of Ethnopharmacology, 154(3), 645–651. https://doi.org/10.1016/j.jep.2014.04.014
Adewuyi, A., & Oderinde, M. S. (2014). Fatty acid composition and physicochemical properties of selected under-utilized seed oils in Nigeria. Food Chemistry, 165, 506–510. https://doi.org/10.1016/j.foodchem.2014.05.136
Islam, M. S., Khan, M. A., & Qader, S. (2022). Utilisation of Hyphaene thebaica as food and feed in desert and subtropical regions. Journal of Arid Environments, 201, 104545. https://doi.org/10.1016/j.jaridenv.2022.104545
AOAC. Official Methods of Analysis, 19th edn; Association of Official Analytical Chemists: Washington, DC, USA. 2006. Method Validation Programmes. Available:http://www.aoac.org/vmeth.page 1.htm
Saed AA, Isam MAZ. Phytochemistry and pharmaceutical evaluation of Balanites aegyptiaca: an overview. Journal of Experimental Biology and Agricultural Sciences. 2018;6(3):453–465. https://doi.org/10.18006/2018.6(3).453.465
Cunha VM, da Silva MP, de Sousa SH, do Nascimento Bezerra P, Menezes EG, da Silva NJ, da Silva Banna DA, Araújo ME and de Carvalho Junior RN (2019), Bacaba-de-leque (Oenocarpus distichus Mart.) oil extraction using supercritical CO2 and bioactive compounds determination in the residual pulp, The Journal of Supercritical Fluids 144: 81–90. https://doi.org/10.1016/j.supflu.2018.10.010
Ekpa, O., Palou, A., & Frangi, A. (2021). Nutritional composition and health-promoting properties of underutilized African plant foods: A systematic review. Food Chemistry, 356, 129707.https://doi.org/10.1016/j.foodchem.2021.129707
Gadu, S. R., Alademeyin, J. O., & Abubakar, M. (2020). Fatty acid profile and physicochemical properties of oils extracted from selected wild fruits in West Africa. Journal of Food Composition and Analysis, 92, 103589.
https://doi.org/10.1016/j.jfca.2020.103589
Kavithaa, V., & Parimalavalli, R. (2014). Physicochemical characteristics and fatty acid composition of underutilized seed oils. Journal of Food Science and Technology, 51(9), 1990–1996. https://doi.org/10.1007/s13197-012-0738-1
Atasie, V. N., Akinhanmi, T. F., & Ojiodu, C. C. (2009). Proximate analysis and physico-chemical properties of Aframomum melegueta and Monodora myristica seeds. Journal of Medicinal Food, 12(2), 393–397.https://doi.org/10.1089/jmf.2007.0642
Okwu, D. E., & Ukanwa, N. H. (2010). Nutritive value and phytochemical contents of wild fruits used in Nigerian traditional diets. African Journal of Biotechnology, 9(25), 3807–3810. https://doi.org/10.5897/AJB10.1239
Aremu, M. O., Ibrahim, H. (2019). Variability in fatty acid composition of selected Nigerian wild fruits. Journal of Food Composition and Analysis, 84, 103252. https://doi.org/10.1016/j.jfca.2019.103252
Mbanga, J. N., & Nkang, A. (2021). Comparative study of fatty acid composition in indigenous African fruit seed oils. African Journal of Food Science, 15(3), 85–93. https://doi.org/10.5897/AJFS2020.2048
Gunstone, F. D. (2011). Vegetable Oils in Food Technology: Composition, Properties and Uses (2nd ed.). Wiley-Blackwell.
Tetteh, G., & Asare, R. (2022). Unsaturated fatty acid profiles and health implications of oils from under-utilised African tree species. Food Research International, 162, 111923. https://doi.org/10.1016/j.foodres.2022.111923
Aremu M. O., Ibrahim H., and Aremu S. O. (2016), Lipid composition of black variety of raw and boiled tigernut (Cyperus esculentus L.) grown in North-East Nigeria, Pakistan Journal of Nutrition 15(5): 427–438. https://doi.org/10.3923/pjn.2016.427.438
Yusuf, F., Adeyemi, M., & Olaniyi, O. (2020). Variability in fatty acid content of indigenous Nigerian fruit seed oils. Journal of Food Composition and Analysis, 89, 103466. https://doi.org/10.1016/j.jfca.2020.103466
Hassan, M. K., Adeoye, O., & Oladimeji, F. (2021). Fatty acid profile of Detarium senegalense kernel oil from Nigeria. Journal of Food Bio-chemistry, 45(5), e13758. https://doi.org/10.1111/jfbc.13758
Nkafamiya, I. I., Jideani, A. I. O., & Jideani, V. A. (2010). Fatty acid profile and other physico-chemical properties of Shea (Vitellaria paradoxa) kernel oil. International Journal of Agricultural Research, 5(2), 99–105. https://doi.org/10.3923/ijar.2010.99.105
Olaleye, M. T., Adejobi, F., & Ayodele, O. O. (2022). Potential of wild melon and roselle seed oils as nutraceutical raw materials: Fatty acids and antioxidant properties. Journal of Food Processing and Preservation, 46(3), e16324. https://doi.org/10.1111/jfpp.16324
Garaffo, M., Vassallo-Agius, R., Nengas, Y., Lembo, E., Rando, R., Maisano, R., Dugo, G., & Giuffrida, D. (2011). Fatty acids profile, atherogenic and thrombogenic health lipid indices of raw roe of bluefin tuna and its salted product “bottarga.” Food and Nutrition Sciences, 2(7), 736–743. https://doi.org/10.4236/fns.2011.27101
Chinwe AN, Theresa OO and Dorothy CA (2024), Assessment of physicochemical and fatty acid properties of oils extracted from avocado pear (Persea americana) and African black pear (Dacryodes edulis), IPS Journal of Agriculture, Food Technology and Security, 1(1): 20–25.
Osagie AU, Eke NB, and Ofuya ZD (2021), Fatty acid composition and physicochemical properties of African pear oil: Nutritional and health implications, Journal of Nutritional Biochemistry 8.6: 108–114.
El-Kholy, W. M. (2018). Nutritional importance of Hyphaene thebaica fruit. Journal of Food Measurement and Characterization, 12, 256–264. https://doi.org/10.1007/s11694-017-9620-1
Djuuričić, D., & Calder, P. C. (2021). Omega-3 fatty acids and cardiovascular health: An update for health professionals. Nutrients, 13(7), 2332. https://doi.org/10.3390/nu13072332
Bora P.S, Narain N, and Rocha RVM (2022), Chemical characterization and nutritional analysis of avocado (Persea americana Mill.) oil, Journal of the American Oil Chemists' Society 99(3): 123–134. https://doi.org/10.1002/aocs.12613
Usman, Z. L., Aremu, M. O., Ogah, S. P. I., Ibrahim, H. and Aremu, S. O. (2024). Physicochemical characteristics and fatty acid composition of five selected leafy vegetables grown in southwest, Nigeria. Journal of Human, Health and Halal Metrics, 5(2): 33–45. https://doi.org/10.30502/jhhhm.2024.473108.1095.
Russo, A. (2009). The unsaturated:saturated fatty acid ratio in the food supply and risk of cardiovascular disease. Nutrition Reviews, 67(11), S19–S22. https://doi.org/10.1111/j.1753-4887.2009.00200.x
Santos-Silva, J., Bessa, R. J. B., & Oeztuerk, C. (2002). Effect of diet and exercise on hypocholesterolaemic/hypercholesterolaemic index of fats in animal models. Food Chemistry, 76(2), 213–220. https://doi.org/10.1016/S0308-8146(01)00261-3
Simopoulos, A. P. (2020). The importance of the ω-6/ω-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine, 245(5), 467–479. https://doi.org/10.1177/1535370220916303
Aremu, M. O., Awagulu, M. S., Ayakeme, E. B., Zando, C., Bini, M. E., Omosebi, M. O. and Aremu, D. O. (2022). Lipid profile and health attributes of mango (Mangifera indica (L.) seed kernel and cashew (Anarcadium occidentale L.) nut kernel: A comparative study. Journal of Human, Health and Halal Metrics, 3(2): 14–22. https://doi.org/10.30502/jhhhm.2022.364887.1061.
Kapcsándi, V., Lakatos, E. H., Sik, B., & Székelyhidi, R. (2021). Characterization of fatty acid composition, antioxidant capacity, and nutritional value of oils from various grape seed varieties (Vitis vinifera). OCL – Oilseeds and Fats, Crops and Lipids, 28(3), D301. https://doi.org/10.1051/ocl/20210025
Ulbricht, T. L. V., & Southgate, D. A. T. (1991). Coronary heart disease: Seven dietary factors. The Lancet, 338(8773), 985–992. https://doi.org/10.1016/0140-6736(91)91846-M
Qian, Y., Wojciechowska, P., Siger, A., Kaczmarek, A., & Rudzińska, M. (2018). Phytochemical content, oxidative stability, and nutritional properties of unconventional cold-pressed edible oils.
Omeje, K. O., Iroha, G. O., & Okorie, E. U. (2022). Biochemical characterization of Soxhlet-extracted pulp oil of Canarium schweinfurthii. Journal of Food Science & Technology, 59, 3567–3578. https://doi.org/10.1007/s13197-022-05378-2
Hassan, M. K., Adeoye, O., & Oladimeji, F. (2021). Fatty acid profile of Detarium senegalense oil. Journal of Food Biochemistry, 45(5), e13758.
Dadazadeh, A., & colleagues. (2025). Extraction of oil from Allium iranicum seed and evaluation of its fatty acid profile and health lipid indices. Foods, 14(9), 1483. https://doi.org/10.3390/foods14091483
Omeje, K. O., Iroha, G. O., & Okorie, E. U. (2022). Biochemical characterization of Soxhlet-extracted pulp oil of Canarium schweinfurthii. Journal of Food Science & Technology, 59, 3567–3578. https://doi.org/10.1007/s13197-022-05378-2
Giovagnoli-Vicuña, C., Viteri, R., Aparicio, J., Quispe, I., & others. (2025). Bioactive properties and fatty acid profile of seed oil from Amomyrtus luma. Compounds, 5(3), 31. https://doi.org/10.3390/compounds5030031
Wapid, R. (2017). Phytochemical and nutritional properties of seed oil from under-utilised fruits: the case of cape gooseberry (Physalis peruviana). Natural Product Research, 31(12), 1353–1361. https://doi.org/10.1080/14786419.2016.1230540
Aremu MO, Amos VA. (2010). Fatty acids and physicochemical properties of sponge luffa (Luffa cylindrica) kernel oils, Int. J. Chem. Sci. 3(2):166 – 171.
Moreau RA, Whitaker BD, Hicks KB. Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog. Lipid Res. 2002;41(6):457-500. Available: http://dx.doi.org/10.1016/S01637827(02)00006-1 [PMID: 12169300].
Aremu M. O., Ibrahim H. and Andrew C. (2017). Comparative studies composition of on the lipid blood plum (Haematostaphis Barteri) pulp and seed oils. The Open Biochemistry Journal. 6(5): 73–80.https://doi.org/:10.2174/1874091X01711010094.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Matthew Olaleke Aremu, Emmanuel Ezekiel, Abdullahi Usman, Idzi Amos Ambo, Jude Chinedu Onwuka, Hamza Ibrahim Muhammad (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

