Multi-Sensor Satellite Data Assessment of Spatio-Temporal Dynamics of Air Pollution in Abuja FCT and Adjoining States in Nigeria

Auteurs

  • John Okon James Department of Physics, Faculty of Physical Sciences, Federal University of Lafia, Nigeria Auteur
  • Taiwo Adewumi Department of Physics, Faculty of Physical Sciences, Federal University of Lafia, Nigeria Auteur
  • Omotayo May Durodola Department of Physics, Faculty of Natural Science, University of Jos, Nigeria Auteur
  • Rita Nwamaka Okonkwo Government Girls Secondary School, Rumuokwuta, Port Harcourt, Nigeria Auteur
  • Oladiran Johnson Abimbola Department of Physics, Faculty of Physical Sciences, Federal University of Lafia, Nigeria Auteur

DOI :

https://doi.org/10.62050/ljsir2025.v3n2.632

Mots-clés :

air pollution, urban area, remote sensing, Sentinel-5P, TROPOMI

Résumé

Nigeria’s Federal Capital Territory (FCT) of Abuja has witnessed rapid urbanization, and this urbanization has significantly impacted the development of neighbouring states with the attendant increase in air pollution. This study presents a comprehensive multi-sensor satellite assessment of the spatiotemporal fluctuations of key pollutants—nitrogen oxides (NOx), sulfur dioxides (SO₂), carbon (II) oxides (CO), methane (CH₄), ozone (O₃), and formaldehyde (HCHO), and the absorbing aerosol index (AI)—across Abuja and its neighbouring states (Nasarawa, Kogi, Niger, and Kaduna) from 2019 to 2024. Using satellite remote sensing data from Sentinel-5P/TROPOMI together with other atmospheric data, the temporal dynamics of pollutants and their connections to parameters such as ambient temperature, Normalized Difference Vegetation Index (NDVI), and precipitation have been investigated. NO2 and HCHO were found to be increasing around Suleja, Abuja, and Lokoja, as SO2 and CO were found to be decreasing, indicating an improved efficient use of fuel and emission control. A positive correlation (r = 0.62) between precipitation and ozone was found, showing there is more convective transport and photochemical production during the rainy season. The effects of plants on the absorption of air pollution were shown through the negative correlations between NDVI, CO, and AI. Methane, on the other hand, moved from north to south in space, which was the same direction as changes in the intensity of farming. The findings show how unified policies, such as proper city planning, vegetation protection, and emission reduction, are important in sprawling urban areas for air pollution reduction.

##plugins.themes.default.displayStats.downloads##

##plugins.themes.default.displayStats.noStats##

Références

Akanji A. R., M. O. Francis & A. F. Akintola (2024). Air Quality Trends and Pollution Analysis in Nigerian Cities Using Time Series Methods. International Journal of Advanced Statistics and Probability, 11(2), 108–123. https://doi.org/10.14419/w5rj1f64

Ezeigwe, N. M., Adinma, E. D., Okobia, E. L., & Schwander, S. (2024). Characterization and Quantification of Vehicular Emissions in Abuja Municipality – Implications for Public Health. Nigerian Medical Journal, 65(3) (2024). https://doi.org/10.60787/NMJ-V65I3-383

Ibrahim, R., Dauda, M., Igwemmar, N., Salau, R., & Abdu, B. (2024). Estimating Pollution Indices of Selected Metals in the Soils of Abuja Metropolis, Nigeria. European Journal of Scientific Research and Reviews, 0, 1. https://doi.org/10.5455/ejsrr.20240714075837

Mohebbichamkhorami, M., Arbabi, M., Mirzaei, M., Ahmadi, A., Hassanvand, M. S., & Rouhi, H. (2020). Ambient air particulate matter (PM10) satellite monitoring and respiratory health effects assessment. Journal of Environmental Health Science and Engineering, 18(2), 1247–1258. https://doi.org/10.1007/s40201-020-00542-4

Ihedike, C., Mooney, J. D., Fulton, J., & Ling, J. (2023). Evaluation of real-time monitored ozone concentration from Abuja, Nigeria. BMC Public Health, 23(1). https://doi.org/10.1186/s12889-023-15327-1

Omole D. O., Udemezue C. C., Agboola O. S. (2025). Assessment of urban and industrial effluents on a receiving stream using statistical and quality indices. Sci Afric. 29, e02781. https://doi.org/10.1016/j.sciaf.2025.e02781

Liu C., Calders K., Origo N., Disney M., Meunier F., Woodgate W., Gastellu-Etchegorry J-P., Nightingale J., Honkavaara E., Hakala T., Markelin L., Verbeeck H. (2024). Reconstructing the digital twin of forests from a 3D library: Quantifying trade-offs for radiative transfer modeling. Remote Sens Environ. 298, 113832. https://doi.org/10.1016/j.rse.2023.113832

Timofeev Y. M. and Nerobelov G. M. (2024). Satellite Investigations of the Atmospheric Gas Composition. Izv. Atmos. Ocean. Phys. 60, 660–688. https://doi.org/10.1134/S0001433824700658

Locke A. V., Heffernan R. C., McDonagh G., Yassa J., and Flaherty G. T. (2022). Clearing the air: a global health perspective on air pollution. Int J Travel Med Glob Health. 10(2), 46-49. https://doi.org/10.34172/ijtmgh.2022.09

Roy, A. (2021). Atmospheric Pollution Retrieval Using Path Radiance Derived from Remote Sensing Data. Journal of Geovisualization and Spatial Analysis, 5(2). https://doi.org/10.1007/s41651-021-00093-8

Stratoulias, D., Nuthammachot, N., Dejchanchaiwong, R., Tekasakul, P., & Carmichael, G. R. (2024). Recent Developments in Satellite Remote Sensing for Air Pollution Surveillance in Support of Sustainable Development Goals. Remote Sensing, 16(16), 2932. https://doi.org/10.3390/rs16162932

Ramadas, M., & Abraham, A. (2022). Segmentation on remote sensing imagery for atmospheric air pollution using divergent differential evolution algorithm. Neural Computing and Applications, 35(5), 3977–3990. https://doi.org/10.1007/s00521-022-07922-x

Clerbaux, C., Hadji-Lazaro, J., Turquety, S., George, M., Boynard, A., Pommier, M., Safieddine, S., Coheur, P.-F., Hurtmans, D., Clarisse, L., & Van Damme, M. (2015). Tracking pollutants from space: Eight years of IASI satellite observation. Comptes Rendus. Géoscience, 347(3), 134–144. https://doi.org/10.1016/j.crte.2015.06.001

Clark, C. D. (1993). Satellite remote sensing for marine pollution investigations. Marine Pollution Bulletin, 26(7), 357–368. https://doi.org/10.1016/0025-326x(93)90182-j

Omokpariola D. O., Nduka J. N., and Omokpariola P. L. (2024). Short-term trends of air quality and pollutant concentrations in Nigeria from 2018–2022 using tropospheric sentinel-5P and 3A/B satellite data. Discov Appl Sci. 6, 182. https://doi.org/10.1007/s42452-024-05856-8

ClimeData (2025). Abuja Climate. https://en.climate-data.org/africa/nigeria/federal-capital-territory/abuja-703/

Muñoz-Sabater J., Dutra E., Agustí-Panareda A., Albergel C., Arduini G., Balsamo G., Boussetta S., Choulga M., Harrigan S., Hersbach H., Martens B., Miralles D. G., Piles M., Rodríguez-Fernández N. J., Zsoter E., Buontempo C., and Thépaut J. (2021). ERA5-Land: a state-of-the-art global reanalysis dataset for land. Earth Syst Sci Data. 13(10), 4349-67. https://doi.org/10.5194/essd-13-4349-2021

Funk C., Peterson P., Landsfeld M., Pedreros D., Verdin J., Shukla S., Husak G., Rowland J., Harrison L., Hoell A., and Michaelsen J. (2015). The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Scientific Data, 2, 150066. https://doi.org/10.1038/sdata.2015.66

Seinfield, John H. (1975). Air Pollution, Physical and Chemical Fundamentals, McGraw-Hill, New York, p.73. ISBN: 0070560420

AbdulRaheem, A.M.O., Adekola, F.A. & Obioh, I.O. (2009). The Seasonal Variation of the Concentrations of Ozone, Sulfur Dioxide, and Nitrogen Oxides in Two Nigerian Cities. Environ Model Assess 14, 497–509. https://doi.org/10.1007/s10666-008-9142-x

Oluleye, A. (2021). Satellite Observation of Spatio-temporal Variations in Nitrogen Dioxide over West Africa and Implications for Regional Air Quality. Journal of Health and Pollution, 11(31), 210913. https://doi.org/10.5696/2156-9614-11.31.210913

Reuben, G. E., & Akporhonor, E. E. (2024). Evaluation of the concentration and distribution of selected air pollutants in some towns in Ukwuani LGA of Delta State, Nigeria. Nigerian Journal of Science and Environment, 22(3), 91-106.

Enuneku, A., Anani, O. A., Amaechi, C. F., Goodluck, O. M., & Nwulu, F. L. (2024). Monitoring of SO₂ and NO₂ Levels around a Gas Flow Station in the Sub-Saharan Region Using Sentinel 5P Satellite Data. J Indian Soc Remote Sens 52, 2375–2388. https://doi.org/10.1007/s12524-024-01946-7

Fioletov V. E., C. A. McLinden, D. Griffin, I. Abboud, N. Krotkov, P. J. T. Leonard, C. Li, J. Joiner, N. Theys, & S. Carn (2023). Version 2 of the global catalogue of large anthropogenic and volcanic SO₂ sources and emissions derived from satellite measurements (2005–2021). Earth Syst Sci Data, 15, 75–93. https://doi.org/10.5194/essd-15-75-2023

Mahmud K., Mitra B., Uddin M. S., Hridoy A. E. E. (2023). Temporal assessment of air quality in major cities in Nigeria using satellite data. Atmos Environ X. 20, 100227. https://doi.org/10.1016/j.aeaoa.2023.100227

Fuwape I. A., Okpalaonwuka C. T., Ogunjo S. T. (2021). Impact of COVID-19 lockdown on air quality in selected Nigerian cities. Air Qual Atmos Health. 14, 149–55. https://doi.org/10.1007/s11869-020-00921-8

Dylan B. Millet, Daniel J. Jacob, Solène Turquety, Rynda C. Hudman, Shiliang Wu, Alan Fried, James Walega, Brian G. Heikes, Donald R. Blake, Hanwant B. Singh, Bruce E. Anderson, Antony D. Clarke (2006). Formaldehyde distribution over North America: Implications for satellite retrievals of formaldehyde columns and isoprene emission. J Geophys Res Atmos. 111(D24). https://doi.org/10.1029/2005JD006853

De Smedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlemmix, T., Pinardi, G., Theys, N., Lerot, C., Gielen, C., Vigouroux, C., Hermans, C., Fayt, C., Veefkind, P., Müller, J.-F., and Van Roozendael, M. (2015). Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations, Atmos. Chem. Phys., 15(21), 12519–12545, https://doi.org/10.5194/acp-15-12519-2015

Monks, P. S., A. T. Archibald, A. Colette, O. Cooper, M. Coyle, R. Derwent, D. Fowler, C. Granier, K. S. Law, G. E. Mills, D. S. Stevenson, O. Tarasova, V. Thouret, E. von Schneidemesser, R. Sommariva, O. Wild, and M. L. Williams (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos Chem Phys. 15(15), 8889–973. https://doi.org/10.5194/acp-15-8889-2015

Duncan, B. N., J. A. Logan, I. Bey, I. A. Megretskaia, R. M. Yantosca, P. C. Novelli, N. B. Jones, and C. P. Rinsland (2007). Global budget of CO, 1988–1997: source estimates and validation with a global model. J Geophys Res Atmos, 112(D22), D22301. https://doi.org/10.1029/2007JD008459

Streets, D. G., T. C. Bond, G. R. Carmichael, S. D. Fernandes, Q. Fu, D. He, Z. Klimont, S. M. Nelson, N. Y. Tsai, M. Q. Wang, J.-H. Woo, and K. F. Yarber (2003). An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res Atmos., 108(D21), 8809. https://doi.org/10.1029/2002JD003093

Zhu Lei, Loretta J. Mickley, Daniel J. Jacob, Eloïse A. Marais, Jianxiong Sheng, Lu Hu, Gonzalo González Abad, and Kelly Chance (2017). Long-term (2005–2014) trends in formaldehyde (HCHO) columns across North America as seen by the OMI satellite instrument: Evidence of changing emissions of volatile organic compounds. Geophys Res Let., 44(13), 7079-7086. https://doi.org/10.1002/2017GL073859

CCAC (2025). Methane—the world’s second-largest contributor to global warming after carbon dioxide and a key ingredient in ground-level ozone pollution. Climate and Clean Air Coalition. https://www.ccacoalition.org/short-lived-climate-pollutants/methane

IPCC (2023). Climate Change 2021-The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report. Cambridge Univ. Press. https://doi.org/10.1017/9781009157896

Parker R. J., Boesch H., Byckling K., Webb A. J., Palmer P. I., Feng L., P. Bergamaschi, F. Chevallier, J. Notholt, N. Deutscher, T. Warneke, F. Hase, R. Sussmann, S. Kawakami, R. Kivi, D. W. T. Griffith, and V. Velazco (2015). Assessing 5 years of GOSAT Proxy XCH4 data and associated uncertainties. Atmos Meas Tech. 8(11), 4785–805. https://doi.org/10.5194/amt-8-4785-2015

Janardanan, R., Maksyutov, S., Tsuruta, A., Wang, F., Tiwari, Y. K., Valsala, V., Ito, A., Yoshida, Y., Kaiser, J. W., Janssens-Maenhout, G., Arshinov, M., Sasakawa, M., Tohjima, Y., Worthy, D. E. J., Dlugokencky, E. J., Ramonet, M., Arduini, J., Lavric, J. V., Piacentino, S., ... Matsunaga, T. (2020). Country-Scale Analysis of Methane Emissions with a High-Resolution Inverse Model Using GOSAT and Surface Observations. Remote Sensing, 12(3), 375. https://doi.org/10.3390/rs12030375

Torres O, Bhartia PK, Herman JR, Sinyuk A, Ginoux P, Holben B. (2002). A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J Atmos Sci. 59(3), 398–413. https://doi.org/10.1175/1520-0469(2002)059<0398:ALTROA>2.0.CO;2

Graaf M. de, P. Stammes, O. Torres, and R. B. A. Koelemeijer (2005). Absorbing Aerosol Index: Sensitivity analysis, application to GOME and comparison with TOMS, J. Geophys. Res. 110, D010201, https://doi.org/10.1029/2004JD005178

Fioletov V., McLinden C. A., Griffin D., Theys N., Loyola D. G., Hedelt P., Krotkov N. A., and Li C. (2020). Anthropogenic and volcanic point source SO2 emissions derived from TROPOMI on board Sentinel-5 Precursor: first results. Atmos Chem Phys. 20(9), 5591–5607. https://doi.org/10.5194/acp-20-5591-2020

Krotkov N. A., McLinden C. A., Li C., Lamsal L. N., Celarier E. A., Marchenko S. V., Swartz W. H., Bucsela E. J., Joiner J., Duncan B. N., Boersma K. F., Veefkind J. P., Levelt P. F., Fioletov V. E., Dickerson R. R., He H., Lu Z., and Streets D. G. (2016). Aura OMI observations of regional SO₂ and NO₂ pollution changes from 2005 to 2015. Atmos Chem Phys. 16(7), 4605–29. https://doi.org/10.5194/acp-16-4605-2016

Brönnimann S., Jacques-Coper M., Rozanov E., Fischer A. M., Morgenstern O., Zeng G., Akiyoshi H., and Yamashita Y. (2017). Tropical circulation and precipitation response to ozone depletion and recovery. Environ. Res. Lett. 12, 064011. https://doi.org/10.1088/1748-9326/aa7416

Fan C., Ding M., Wu P., and Fan Y. (2019). The Relationship between Precipitation and Aerosol: Evidence from Satellite Observation. arXiv, 1812.02036v2. https://doi.org/10.48550/arXiv.1812.02036

Robertson L. S., Zhou L., and Chen K. (2020). Temperature, precipitation, ozone pollution, and daily fatal unintentional injuries in Jiangsu Province, China during 2015-2017. Inj Epidemiol. 7(1), 42. https://doi.org/10.1186/s40621-020-00268-9

Kawichai S., Kliengchuay W., Aung H. W., Niampradit S., Mingkhwan R., Niemmanee T., Srimanus W., Phonphan W., Suwanmanee S., and Tantrakarnapa K. (2025). The Influence of Meteorological Conditions and Seasons on Surface Ozone in Chonburi, Thailand. Toxics. 13(3), 226. https://doi.org/10.3390/toxics13030226

David J. Nowak, Daniel E. Crane, Jack C. Stevens (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 4(3–4), 115-123. https://doi.org/10.1016/j.ufug.2006.01.007

cover

Publiée

2025-10-05

Comment citer

Multi-Sensor Satellite Data Assessment of Spatio-Temporal Dynamics of Air Pollution in Abuja FCT and Adjoining States in Nigeria. (2025). Lafia Journal of Scientific and Industrial Research, 3(2), 122-136. https://doi.org/10.62050/ljsir2025.v3n2.632

Articles similaires

1-10 sur 21

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.