Larvicidal Efficacy of Citrus sinensis Peel Extract against Culex quinquefasciatus: Implications for Sustainable Mosquito Control
DOI:
https://doi.org/10.62050/ljsir2026.v4n1.671Keywords:
Citrus sinensis, larval mortality, mosquito control, botanical insecticide, Culex quinquefasciatus.Abstract
Culex quinquefasciatus, a vector of lymphatic filariasis and many other arboviral infections, remains a major public health concern, especially in regions lacking access to modern vector control tools. Growing resistance to synthetic insecticides has driven interest in eco-friendly alternatives, including plant-based larvicides such as Citrus sinensis (orange) peels. This study evaluated the larvicidal activity of ethanolic C. sinensis peel extract against Cx. quinquefasciatus larvae under laboratory conditions. Air-dried orange peels were pulverized and subjected to cold maceration in ethanol. Extracts were tested at concentration of 100–8,333 ppm on third to early fourth instar larvae, with four replicates per concentration. Mortality was recorded at 24 and 48 hours. LC₅₀ and LC₉₀ values were determined using linear interpolation. Data were analyzed using one-way ANOVA followed by Tukey’s post hoc test at a 5% significance level. High concentrations (1,667–8,333 ppm) caused complete mortality (25.00 ± 0.00) within five minutes, with no significant difference among treatments (p > 0.05). At moderate concentrations, mortality followed a dose-response trend: 400 ppm resulted in 54% and 57% mortality at 24 and 48 hours, while 800 and 1000 ppm achieved 100% mortality at both time points. Estimated LC₅₀ and LC₉₀ values were 385.2 and 713.0 ppm. No control group mortality was recorded throughout the study. C. sinensis peel extract exhibits potent larvicidal activity against Cx. Quinquefasciatus, particularly at concentrations above 400 ppm. Its efficacy low cost and availability suggest potential as a natural component in integrated mosquito control strategies, particularly in resource-limited settings.
Downloads
References
World Health Organization (WHO). (2021). Guidelines for efficacy testing of mosquito larvicides. Available from https://www.who.int/publications/i/item/9789240028902
World Health Organization (WHO). (2020). Vector-borne diseases. Available from https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
Adesoye, O. A., Olanrewaju, C. A., & Malann, Y. D. (2025). Insect-derived bioactive compounds: Unlocking their potential across medicine, agriculture, and other industries. African Journal of Applied and Agricultural Sciences (AJAAS), 5(2), 123–135.
Adesoye, O. A., Awoniyi, A., & Adeogun, A. (2025). Pyrethroid resistance in Anopheles gambiae s.l.: A focus on permethrin and deltamethrin for malaria vector control. Revista da Sociedade Brasileira de Medicina Tropical / Journal of the Brazilian Society of Tropical Medicine, 25, 32–41.
Adesoye, O. A., Adeogun, A. O., & Awodoyin, T. I. (2025). Permethrin and deltamethrin resistance status of field population of Anopheles mosquitoes in Zuba, Federal Capital Territory of Nigeria. Journal of Science and Technology, Kwame Nkrumah University of Science and Technology, Ghana, 7(2), 23.
Adesoye, O. A., Adeogun, A. O., & Ande, A. T. (2025). Laboratory preparations of lethal and sub-lethal bioassay concentrations of deltamethrin against malaria mosquito in Suleja, Nigeria. Journal of Science and Technology, University of Science and Technology, Aden, Yemen, 30(3), 72–78.
Adesoye, O. A., Adedapo, O., Adeogun, T. A., Oyeniyi, T. A., Olagundoye, O. E., Izekor, R. T., Adetunji, O. O., Babalola, A. S., Akinsete, I. O., Adeniyi, K. A., Akinleye, C. A., Adediran, A. D., Isaac, C., Awolola, S. T., & Ande, A. T. (2024). Evaluation of generational implications of metabolic resistance development in malaria mosquitoes against permethrin insecticides. Sahel Journal of Life Sciences (FUDMA), 2(2), 225–231.
Adesoye, O. A., Adedapo, O., Adeogun, T. A., Oyeniyi, T. A., Olagundoye, O. E., Izekor, R. T., Adetunji, O. O., Babalola, A. S., Akinsete, I. O., Adeniyi, K. A., Akinleye, C. A., Adediran, A. D., Isaac, C., & Adeogun, O. A. (2024). Entomological collections and identifications of mosquito faunas in selected area councils of Nigeria Federal Capital Territory. Lafia Journal of Science and Innovative Research (LJSIR), 2(2), 134–138.
Adesoye, O. A., Adedapo, O., Adeogun, T. A., Oyeniyi, T. A., Olagundoye, O. E., Izekor, R. T., Adetunji, O. O., Babalola, A. S., Akinsete, I. O., Adeniyi, K. A., Akinleye, C. A., Adediran, A. D., Isaac, C., Awolola, S. T., & Ande, A. T. (2024). Biological fitness cost of glutathione-S-transferase (GST)-mediated permethrin resistance in Anopheles gambiae Giles (Diptera: Culicidae). FUW Journal of Sciences (FJS), 8(3), 539–545.
Adesoye, O. A., Adeniyi, K. A., Adeogun, A. O., Oyeniran, O. A., Akinsete, I. O., Akinleye, C. A., Alaje, O. M., Ezeonuegbu, B. A., & Bello, Z. T. (2024). Malaria prevalence and its associated factors among pregnant women attending antenatal clinic at General Hospital, Dutse, Jigawa State. Dutse Journal of Pure and Applied Sciences (DUJOPAS), 10(2b), 220–219.
Benelli, G., & Mehlhorn, H. (2016). Declining malaria, rising dengue and Zika virus: Insights for mosquito vector control. Parasitology Research, 115(5), 1747–1754.* https://doi.org/10.1007/s00436-016-4971-z
Mohan, R., Ramasamy, M. S., & Saravanan, D. (2019). Plant-based larvicides: A systematic review on their efficacy and safety. Journal of Parasitic Diseases, 43(2), 156–165.
Rahman, M. A., Islam, M. B., Biswas, M., & Alam, A. H. M. K. (2022). Phytochemical screening and biological activities of medicinal plants: A review. Journal of Pharmacognosy and Phytochemistry, 11(3), 45–53.*
Eze, E. A., Obanua, N. J., & Uzoigwe, C. I. (2019). Insecticidal potential of orange (Citrus sinensis) peel extract against mosquito larvae. African Journal of Biotechnology, 18(27), 705–710.* https://doi.org/10.5897/AJB2019.16800
Olagundoye, O. E., & Adesoye, O. A. (2023). Larvicidal efficacy of Azadirachta indica, Ocimum gratissimum, and Cymbopogon citratus ethanolic extracts against Culex quinquefasciatus larvae. Pan African Journal of Life Sciences, 7(1), 555–560.*
World Health Organization. (2011). Quality control methods for herbal materials (Updated ed.). https://apps.who.int/iris/handle/10665/44479
Adeleye, O. A., Omosun, G., & Samuel, O. F. (2020). Utilization of fruit waste in Nigeria: A sustainable approach. Nigerian Journal of Environmental Sciences, 14(2), 100–106.
Suleiman, M. M., Sule, W. F., & Abdullahi, S. A. (2021). Valorization of citrus fruit waste: A sustainable approach for bio-insecticide development. Nigerian Journal of Scientific Research, 19(1), 90–95.
World Health Organization. (2003). Guidelines on good agricultural and collection practices (GACP) for medicinal plants. https://apps.who.int/iris/handle/10665/42783
World Health Organization. (2011). Quality control methods for herbal materials (Updated ed.). https://apps.who.int/iris/handle/10665/44479
Ndhlala, A. R., Moyo, M., & Van Staden, J. (2020). Medicinal properties and conservation of Pelargonium sidoides DC. Journal of Ethnopharmacology, 263, 113164. https://doi.org/10.1016/j.jep.2020.113164
Mansour, S. A., Hassan, A. M., & El-Tayeb, T. A. (2023). Phytochemicals with larvicidal activity against filarial vectors. Journal of Environmental Sciences, 124, 89–98.
Abubakar, M., Musa, S. B., & Danjuma, B. (2023). Chemical profiling and insecticidal efficacy of citrus peel oils against mosquito larvae. African Journal of Vector Control, 9(1), 15–22.
Kumar, N., Sharma, A., & Tyagi, B. K. (2023). Plant-based larvicides: A review of recent advancements. Asian Pacific Journal of Tropical Medicine, 16(4), 167–175.
Shahid, M., Ashfaq, U. A., & Tahir, M. (2023). GC-MS analysis and mosquito larvicidal activity of Citrus sinensis extract. Natural Product Communications, 18(3), 1934578X231167134.
Jain, S., Jha, R. K., & Kumar, D. (2023). Cytological alterations in mosquito larvae following phytochemical exposure. Annals of Tropical Medicine and Public Health, 16(1), 97–104.
Ali, A., Khan, F., & Sadiq, M. (2023). Utilization of agro-waste for mosquito control: A sustainable approach. Ecological Safety and Environment, 14(2), 78–86.
Fatima, S., Siddiqui, M. A., & Khan, M. (2023). Comparative larvicidal potential of herbal extracts and chemical agents. Environmental Research and Public Health, 20(3), 3492.
Adesoye, O. A., Adeogun, A., Oyeniyi, T. A., Olagundoye, O. E., Izekor, R. T., Adetunji, O. O., Babalola, A. S., Adediran, D. A., Isaac, C., Adeleke, T., Awolola, T. S., & Ande, A. T. (2023). Metabolic resistance mechanisms evident in generations of Anopheles gambiae (Kisumu) adults exposed to sub-lethal concentrations of permethrin insecticide. Pan African Journal of Life Sciences (PAJOLS), 7(3), 430–471.*
Ibrahim, M. B., Salihu, A. S., & Musa, U. (2023). Resistance patterns of mosquito larvae to repeated exposure of bio-insecticides. Journal of Vector Ecology, 48(2), 112–120.
Singh, P., Gupta, V., & Tiwari, A. (2023). Exploring synergistic combinations of botanicals for mosquito control. Pest Management Science, 79(5), 2107–2116.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Oluwaseun Adegbola Adesoye, Fatima Salihu, Susan Oluwaponmile Adetutu, Israel Oluwansola Akinsete, Oluwatoyin Adeola Oyeniran, Nyadar Palmah Mutah, Ayodele Babalola, Adedapo Adeogun, Adedayo Michael Awoniyi (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

