Use of Geoelectric Method for Groundwater Assessment in  Awe Brine Area, Awe Nasarawa Nigeria

Auteurs

  • Mohammed Aliyu Kaura Department of Geology, Federal University of Lafia, Nasarawa state, Nigeria Auteur https://orcid.org/0000-0001-6372-7125
  • Abdullahi Ahmed Sule Department of Physics, Federal University of Lafia, Nasarawa state, Nigeria Auteur
  • Umar Nuhu Degree Department of Geology, Federal University of Lafia, Nasarawa state, Nigeria Auteur
  • Saidu Bello Mamudu National Biotechnology Research and Development Agency, Bioresources Development Center Billiri Gombe State, Nigeria Auteur
  • Yohannah Andrawus Department of Geology, Federal University of Lafia, Nasarawa state, Nigeria Auteur
  • Badamisi Muhammad Maina Department of Geology, Federal University of Lafia, Nasarawa state, Nigeria Auteur
  • Abdulrafiu Sherif Department of Geology, Federal University of Lafia, Nasarawa state, Nigeria Auteur
  • Aliyu Salihu Department of Geology, Federal University of Lafia, Nasarawa state, Nigeria Auteur

DOI :

https://doi.org/10.62050/ljsir2024.v2n2.245

Mots-clés :

Array, Dar-Zarrouk parameter, Aquifer, Geoelectric section, Brine field, Longitudinal Conductance, Iso-resistivity

Résumé

A total of Forty-five vertical electrical soundings (VES) were conducted using Schlumberger electrode configuration to map the groundwater condition in the Awe Brine Field, Nasarawa, Nigeria. The result of the study exhibited significant variations in resistivity across the area, which allowed the generation of iso-resistivity contour maps for four distinct geoelectric layers. The first layer, consisting of a thin top layer of unconsolidated material, displayed resistivity values ranging from 85 Ωm to 2437.8 Ωm. The second layer, composed of shale-sandstone, has a resistivity between 1.2 Ωm to 785 Ωm. The third layer showed resistivity ranging from 1.2 Ωm to 430.5 Ωm. it was observed that a thick layer of sandy clay contained fresh water, with resistivity levels ranging from 27 Ωm to 1825.9 Ωm. The Dar Zarrouk parameters were calculated to evaluate the protective attributes of the aquifers. The analysis revealed that the longitudinal conductance (Sc) ranged from 0.06 to 3.86 S, the longitudinal resistivity (ρL)) ranged from 71.66 to 3830.4 Ωm, and the transverse resistance (TR) ranged between 2.55 and 1102.18 Ω. Based on the resistivity values and thickness of the geoelectric layers, the researchers identified four distinct aquifer zones labelled A, B, C, and D. Notably, the third layer, referred to as the C horizon, displayed significantly lower resistivity and higher salinity compared to the other layers. This layer corresponds to the Awe Formation, renowned for its brine deposits. Consequently, the study suggests that exploring freshwater resources near New Awe is more promising than the Old Awe area

##plugins.themes.default.displayStats.downloads##

##plugins.themes.default.displayStats.noStats##

Références

Uma, K. O. (1998). The brine fields of the Benue Trough, Nigeria: A comparative study of geomorphic, tectonic and hydrochemical properties. J. of Afr. Earth Sci., 26(2), 261–275. https://doi.org/10.1016/S0899-5362(98)00009-8

Offodile, M. E. (1984). The geology and tectonics of Awe brine field. Journal of African Earth Sciences, 2(3), 191–202. https://doi.org/10.1016/s0731-7247(84)80014-2

Offodile, M. E. (1976). The geology of the Middle Benue, Nigeria. V. 1, 166.

Hasan, M., Shang, Y., Akhter, G. & Jin, W. (2019). Application of VES and ERT for delineation of fresh-saline interface in alluvial aquifers of Lower Bari Doab, Pakistan. J. of Appl. Geophy., 164, 200–213. https://doi.org/10.1016/j.jappgeo.2019.03.013

Singh, S., Gautam, P. K., Kumar, P., Biswar, A. & Sakar, T. (2021). Delineating the characteristics of saline water intrusion in the coastal aquifers of tamil nadu, india by analysing the dar-zarrouk parameters. Contributions to Geophysics and Geodesy, 51(2), 141–163. https://doi.org/10.31577/congeo.2021.51.2.3

Salem, Z. E. & Osman, O. M. (2019). Use of geoelectrical resistivity to delineate theseawater intrusion in the northwestern part of the nile delta, Egypt. Handbook of Environmental Chemistry, 73, 425–459. https://doi.org/10.1007/698_2017_175

Alao, J. O., Yusuf, M. A., Nur, M. S., Nuruddeen, A. M., Ahmad, M. S. & Jaiyeoba, E. (2023). Delineation of aquifer promising zones and protective capacity for regional groundwater development and sustainability. SN Appl. Sci., 5(5). https://doi.org/10.1007/s42452-023-05371-2

Nazih, M., Gobashy, M., Araffa, S., Soliman, K. S. & Abdelhalim, A. (2022). Geophysical studies to delineate groundwater aquifer in arid regions: A case study, Gara Oasis, Egypt. Contributions to Geophysics and Geodesy, 52(4), 517–564. https://doi.org/10.31577/congeo.2022.52.4.2

Obakhume, K. A. (2022). Integrated geophysical characterization of saltwater intrusion in Lagos State, Eastern Dahomey Basin, Southwestern Nigeria. Scientific African, 16. https://doi.org/10.1016/j.sciaf.2022.e01251

Nemer, Z., Khaldaoui, F., Benaissa, Z., Belaroui, A., Tebbouche, M. Y. & Ydri, A. (2023). Hydrogeophysical investigation of aquifer parameters and seawater intrusion: A case study from Eastern Mitidja plain, Algeria. Geomech. and Geophy. for Geo-Energy and Geo-Resources, 9(1). https://doi.org/10.1007/s40948-023-00610-7

Hasan, M., Shang, Y., Akhter, G. & Jin, W. (2018). Delineation of saline-water intrusion using surface geoelectrical method in Jahanian Area, Pakistan. Water (Switzerland), 10(11). https://doi.org/10.3390/w10111548

Mahmud, S., Hamza, S., Irfan, M., Huda, S. N. ul, Burke, F. & Qadir, A. (2022). Investigation of groundwater resources using electrical resistivity sounding and Dar Zarrouk parameters for Uthal Balochistan, Pakistan. Groundwater for Sustainable Dev., 17. https://doi.org/10.1016/j.gsd.2022.100738

Offodile, M. E. (1984). The geology and tectonics of Awe brine field. J. of Afr. Earth Sci., 2(3), 191–202. https://doi.org/10.1016/s0731-7247(84)80014-2

Sallau, A., Momoh, A., Opuwari, M., Akinyemi, S. & Lar, U. (2017). An overview of trace elements in soils of Keana-Awe Brine-Fields, Middle Benue Trough, Nigeria. Transactions of the Royal Society of South Africa, 72(1), 47–54. https://doi.org/10.1080/0035919X.2016.1229698

Samuel, M. & Dibal, H. (2021). Major and Trace Element Compositions in Groundwater of Awe Area, Parts of the Middle Benue Trough-Northcentral Nigeria. Science Forum (Journal of Pure and Applied Sciences), 21(3), 472. https://doi.org/10.5455/sf.79074

Offodile, M. E. (1992). An Approach to Groundwater Study and Development in Nigeria. Mecon, Jos, 247, 453.

Kaura, M. A. & Mohammed, M. A. (2017). Geophysical study of Brine deposits using electrical resistivity technique in Awe, Awe Local Government Area of Nasarawa State in Nigeria. FULafia J. of Sci. & Techn. (FJST), 3(2), 63–69.

Barker, R. D. (1989). Depth of investigation of collinear symmetrical four-electrode arrays. Geophysics, 54(8), 1031–1037. https://doi.org/10.1190/1.1442728

Shah, S. H. I. A., Jianguo, Y., Jahangir, Z., Tariq, A. & Aslam, B. (2022). Integrated geophysical technique for groundwater salinity delineation, an approach to agriculture sustainability for Nankana Sahib Area, Pakistan. Geomatics, Natural Hazards and Risk, 13(1), 1043–1064. https://doi.org/10.1080/19475705.2022.2063077

Henriet, J. P. (1976). Direct Applications of the Dar Zarrouk Parameters in Ground Water Surveys. Geophysical Prospecting, 24(2), 344–353. https://doi.org/10.1111/j.1365-2478.1976.tb00931.x

Pehme, P. E. (2011). Groundwater Geophysics: A Tool for Hydrogeology. Environmental and Engineering Geoscience, 17(1), 96–98. https://doi.org/10.2113/gseegeosci.17.1.96

Tsepav, M., Ibrahim, S. & Bayegun, F. (2015). Geoelectrical characterization of aquifer precincts in parts of Lapai, North Central Nigeria. Journal of Applied Sciences and Environmental Management, 19(2), 295. https://doi.org/10.4314/jasem.v19i2.17

Oladapo, M. & Akintorinwa, O. (2007). Hydrogeophysical study of Ogbese South Western Nigeria. Global Journal of Pure and Applied Sciences, 13(1). https://doi.org/10.4314/gjpas.v13i1.16669

Alao, J. O., Yusuf, M. A., Nur, M. S., Nuruddeen, A. M., Ahmad, M. S. & Jaiyeoba, E. (2023). Delineation of aquifer promising zones and protective capacity for regional groundwater development and sustainability. SN Applied Sciences, 5(5). https://doi.org/10.1007/s42452-023-05371-2

Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O. & Wilkinson, P. B. (2013). Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95, 135–156. https://doi.org/10.1016/j.jappgeo.2013.02.017

Khalil, M. H. (2006). Geoelectric resistivity sounding for delineating salt water intrusion in the Abu Zenima area, west Sinai, Egypt. Journal of Geophysics and Engineering, 3(3), 243–251. https://doi.org/10.1088/1742-2132/3/3/006

Hasan, M., Shang, Y., Akhter, G. & Jin, W. (2020). Delineation of contaminated aquifers using integrated geophysical methods in Northeast Punjab, Pakistan. Envtal Monitoring and Assess., 192(1). https://doi.org/10.1007/s10661-019-7941-y

Alabi O. Olusegun, Ojo, A. O., & Dolapo F. Akinpelu. (2016). Geophysical Investigation for Groundwater Potential and Aquifer Protective Capacity around Osun State University (UNIOSUN) College of Health Sciences. American Journal of Water Resources, 4(6), 137–143.

Yohanna, A., Musa, N., Balogun, F. O., Jabbo, J. N., Adamu, A. & Galumje, S. S. (2022). Assessment of groundwater potentials of crystalline basement complex aquifers using hydraulic properties in the Ussa Area of Taraba State, North-East Nigeria. Fudma Journal of Sciences, 6(3), 88–94. https://doi.org/10.33003/fjs-2022-0603-974

Front

Téléchargements

Publiée

2024-06-08

Comment citer

Use of Geoelectric Method for Groundwater Assessment in  Awe Brine Area, Awe Nasarawa Nigeria. (2024). Lafia Journal of Scientific and Industrial Research, 2(2), 29-39. https://doi.org/10.62050/ljsir2024.v2n2.245

Articles les plus lus par le même auteur ou la même autrice

Articles similaires

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.