IN VITRO ANTIOXIDANT AND ANTIHYPERGLYCEMIA PROPERTIES OF VERBENONE ENHANCED WITH SELECTED SOLUBILIZING COMPOUNDS
DOI:
https://doi.org/10.62050/fjst2025.v9n2.468الكلمات المفتاحية:
Verbenone، Antioxidant، Antihyperglycemia، α amylase، α glucosidase، Solubilizing Compoundsالملخص
The pharmacological activities of verbenone had been reported in several diseased states. This study evaluated the in vitro antioxidant and antihyperglycemia properties of verbenone through linkage with selected solubilizing compounds. Oral Glucose Tolerance Test (OGTT) was conducted in non-diabetic mice overloaded with 2 g/kg bwt. glucose solution. In vitro α amylase and α glucosidase inhibitory activities were evaluated for verbenone and selected solubilizing compounds. 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2) and hydroxyl (OH) radical scavenging activity were evaluated for verbenone and selected solubilizing compounds using references procedures. In OGTT assay, verbenone, lysine, cyclodextrin and metformin significantly (p<0.05) lowered glucose concentration compared with the control from 30 - 120 minutes. Lysine and verb-lysine (12.5 μg/mL) steadily raised the percentage α amylase inhibitory activity, while at the same concentration significantly (p<0.05) increased amylase activity from 70 to 95%. Acarbose and all concentrations of compound examined (12.5 - 200 μg/mL) significantly (p<0.05) increased the percentage inhibitory activity of α glucosidase. All concentrations of verbenone significantly increased the percentage scavenging activities of DPPH, H2O2 and OH. Lysine, cyclodextrin verb-lysine showed a significantly (p<0.05) high hydroxyl scavenging while verb-cyclodextrin and acarbose displayed a lower hydroxyl scavenging. The results indicated that verbenone and its linked solubilizing compounds exhibited in vitro antihyperglycemic properties in glucose loaded mice, increased inhibitory activities of α amylase and α glucosidase as well as increased in vitro antioxidant scavenging activities.
التنزيلات
المراجع
Ado, A. M., Mahmoud, F. A., Tijjani, H., Ibrahim, U., Tijani, S., Alka, S., Olatunde, A., Kura, A. U., Mohammed, A., Saliu, O. A., Idowu, O. A. and Ebhodaghe, F. E. (2024). Verbenone and L-arginine attenuate oxidative stress in streptozotocin-nicotinamide induced diabetic mice. Tropical J. of Nat. Product Res., 8(9): 8490-8497. https://doi.org/10.26538/tjnpr/v8i9.35/
Andrade-Cetto, A., Becerra-Jimennez, J. and Cardenes, R. (2008). Alpha glucosidase inhibiting activity of some Mexican plants used in treatment of type 2 diabetes mellitus. J. of Ethnopharmacology, 116, 27-32. DOI: 10.1016/j.jep.2007.10.031
Asmat, U., Abad, K. and Ismail, K. (2016). Diabetes mellitus and oxidative stress – A concise review. Saudi Pharmaceut. J., 24(5), 547–553. https://doi.org/10.1016/j.jsps.2015.03.013/
Attama, S. C., David, S. C., Egunleti, P. F., Okwelum, N. and Obetta, T. U. (2023). Antioxidant and antidiabetic effects of aqueous extract of Senna alata on alloxan-induced diabetic rats. Sokoto Journal of Veterinary Sciences, 21(2), 65-73. DOI: 10.4314/sokjvs.v21i2.3
Bashir, K. U. and Tijjani, H. (2022). Glucose lowering effects and in vitro α-amylase and α-glucosidase inhibitory potential from aqueous extract of Adansonia digitata (Baobab) seed. Medical Sciences Forum, 14(1), 66. https://doi.org/10.3390/ECMC2022-13239
Bhatti, J. S., Sehrawat, A., Mishra, J., Sidhu, I. S., Navik, U., Khullar, N., Kumar, S., Bhatti, G. K. and Reddy, P. H. (2022). Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184, 114-134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019/
Binjawhar, D. N., Alhazmi, A. T., Jawhar, W. N. B., Saeed, W. M. and Safi, S. Z. (2023). Hyperglycaemia-induced oxidative stress and epigenetic regulation of ET-1 gene in endothelial cells. Frontiers in Genetics, 14, https://doi.org/10.3389/fgene.2023.1167773/
Gudise, V., Chowdhury, B. and Manjappa, A. S. (2021). Antidiabetic and antihyperlipidemic effects of Argyreiapierreana and Matelea denticulata: Higher activity of the micellar nano-formulation over the crude extract. J. Tradit. Compliment Med., 11, 259-267. 10.1016/j.jtcme.2020.08.001
Gulcin, I. and Alwasel, S. H. (2023). DPPH Radical Scavenging Assay. Processes, 11, 2248. https://doi.org/10.3390/pr11082248
International Diabetes Federation (IDF). In: IDF Diabetes Atlas, 10th edn. Brussels, Belgium, International Diabetes Federation, 2021. Jaber, S. A. (2023). In vitro α-amylase and α-glucosidase inhibitory activity and in vivo antidiabetic activity of Quercus coccifera (Oak tree) leaves extracts. Saudi J. of Biol. Sci., 30(7), 103688. https://doi.org/10.1016/j.sjbs.2023.103688
Jideani, A. I. O., Silungwe, H., Takalan, T., Omolola, A. O., Udeh, H. O. and Anyasi, T. A. (2021). Antioxidant-rich natural fruit and vegetable products and human health. Int. J. Food Prop., 24(1), 41–67. https://doi.org/10.1080/10942912.2020.1866597
Keser, S., Celik, S., Turkoglu, S., Yilmaz, O. and Turkoglu, I. (2012). Hydrogen peroxide radical scavenging and total antioxidant activity of hawthorn. Chem J., 2(1), 9–12.
Kokil, G. R., Veedu, R. N., Ramm, G. A., Prins, J. B., Parekh, H. S. (2015). Type 2 diabetes mellitus: limitations of conventional therapies and intervention with nucleic acid-based therapeutics. Chem. Rev., 115(11), 4719–4743. https://doi.org/10.1021/cr5002832
Kuppusamy, A., Muthusamy, U., Swashanmugum, T., Subhadradevi, V., Kalyanasubramaniam, R. and Sambathkumar, R. (2011). In vitro (α-Glucosidase and α-Amylase) inhibition and in vivo antidiabetic property of Phytic acid (ip6) in Streptozotocin-Nicotinamide-induced type 2 Diabetes mellitus (NIDDM) in rats. J. of Complem. and Integrative Med., 8, 1553-3840. DOI: 10.2202/1553-3840.1483
Lipinski, B. (2011). Hydroxyl radical and its scavengers in health and disease. Oxid. Med. Cell Longev., 809696. DOI: 10.1155/2011/809696
Lyngsie, G., Krumina, L., Tunlid, A. and Persson, P. (2018). Generation of hydroxyl radicals from reactions between a dimethoxyhydroquinone and iron oxide nanoparticles. Sci. Rep., 8, 10834. https://doi.org/10.1038/s41598-018-29075-5
Mander, S., Kim, D. H., Nguyen, H. T., Yong, H. J., Pahk, K., Kim, E. Y., Lee, K., Seong, J. Y., Kim, W-K., Hwang, J-I. (2019). SP-8356, a (IS)-(-)-verbenone derivative, exerts in-vitro and in-vivo anti-breast cancer effects by inhibiting nf-ӄb signaling. Sci. Rep., 9(6595), 1–12. DOI: 10.1038/s41598-019-41224-y
Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P. and D’Alessandro, A. G. (2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen, 2, 48-78. https://doi.org/10.3390/oxygen2020006
McCune, L. M. and Johns, T. (2002). Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the indigenous peoples of the North American boreal forest. Journal of Ethnopharmacology, 82, 197-205. 10.1016/s0378-8741(02)00180-0
Nguyen, M. T., Thi, B. H. B., Maskey, S., Tran, M. D. and Nguyen, Q. V. (2023). In vitro and in vivo antioxidant and antihyperglycemic potentials of phenolic fractions of Syzygium zeylanicum (L.) DC trunk-bark. Food Sci. Nutr., 11(7), 3875-3884. DOI: 10.1002/fsn3.3373.
Oladipo, S. D., Luckay, R. C. and Olofinsan, K. A. (2024). Evaluating the antidiabetes and antioxidant activities of halogenated Schiff bases derived from 4-(diethylamino) salicylaldehyde: in vitro antidiabetes, antioxidant and computational investigation. Sci. Rep., 14, 27073. https://doi.org/10.1038/s41598-024-78460-w
Rahman, M. M., Islam, M. B., Biswas, M. and Khurshid-Alam, A. H. M. (2015). In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes, 8(1), 621. https://doi.org/10.1186/s13104-015-1618-6
Rappaport, N. G., Owen, D. R. and Stein, J. D. (2001). Interruption of semiochemical-mediated attraction of Dendroctonus valens (Coleoptera: Scolytidae) and selected nontarget insects by verbenone. Environ Entomol., 30, 837–841. https://doi.org/10.1603/0046-225X-30.5.837
Ruch, R. J., Cheng, S. J. and Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10, 1003–1008. DOI: 10.1093/carcin/10.6.1003
Singharoy, S., Pal, D., Das, S. and Ghosh, D. (2024). In vitro anti-diabetic and anti-oxidative evaluation of hydro-methanol bark extract of Bauhinia acuminata (L.). Tropical Journal of Natural Product Research, 8(4), 6932-6939. https://doi.org/10.26538/tjnpr/v8i4.26/
Smirnoff, N. and Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28, 1057–1060. https://doi.org/10.1016/0031-9422(89)80182-7
Song, B. A., Liu, X. H., Yang, S., Hu, D. Y., Jin, L. H. and Zhang, H. (2005). Synthesis and anticancer activity of 234-trimethoxyacetophenoxime ester containing benzothiazole moiety. Chin J Chem., 23: 1236–1240.DOI: 10.1002/cjoc.200591236
Tijjani, H. (2022). L-arginine improves the solubility of verbenone in polar and non-polar solvent in vitro. Academia Letters, 4811. https://doiorg/1020935/AL481125
Tijjani, H. and Imam, S. A. (2021). Inhibition of haemoglobin glycosylation, glucose uptake and in vitro antidiabetic activities of solvent fractions from Daucus carota seed. Ann. Sci. Technol., 6(1), 26–33. DOI: 10.2478/ast-2021-0004
Tijjani, H., Danyaro, A. M., Olatunde, A. and Kura, A. U. (2022). Antihyperglycemic activity of verbenone and L-arginine in nicotinamide-streptozotocin-induced diabetic mice: in vitro and in vivo studies. Beni-Suef. Univ. J. Basic Appl. Sci., 11, 94. https://doi.org/10.1186/s43088-022-00271-7
Tijjani, H., Ibrahim, U., Tijani, S., Alka, S., Olatunde, A., Kura, A. U., Gagman, H. A., Saliu, O. A., Idowu, O. A. and Ebhodaghe, F. E. (2023). Verbenone and L-arginine from Daucus carota seeds attenuate oxidative stress in streptozotocin-nicotinamide (STZ-NAD)-induced diabetic mice: Evidence from In vitro and In vivo Studies.biorXiv, 1-19. https://doi.org/10.1101/2023.09.28.559552/
Yang, L. and Hu, L. (2023). SP-8356: A novel verbenone derivative exerts in vitro anti-non-small cell lung cancer effects, promotes apoptosis via the P53/MDM2 axis and inhibits tumor formation in mice. Cell J., 25(12), 839-846. DOI: 10.22074/cellj.2023.2008708.1385.
