APPLICATIONS OF NANOBREEDING FOR THE ENHANCEMENT OF FOOD SECURITY

Authors

  • S. A. SIRAJO Department of Plant Science and Biotechnology, Federal University of Lafia, Nigeria Author
  • E. H. Kwon-Ndung Department of Plant Science and Biotechnology, Federal University of Lafia, Nigeria Author
  • H. A. Kana Department of Plant Science and Biotechnology, Federal University of Lafia, Nigeria Author

DOI:

https://doi.org/10.62050/fjst2024.v8n1.267

Keywords:

Nanobreeding, food security, nanosensor, nanofertilizer, nanopesticide

Abstract

As the world population continues to expand and environmental challenges escalate, ensuring food security has become an urgent global concern. This paper explores the potential of nanotechnology in addressing these challenges, particularly in the field of crop improvement. Nanobreeding, which utilizes nanotechnological tools and techniques, presents a promising approach to enhance crop production and quality while minimizing environmental impact. Precision agriculture benefits greatly from nanosensors, which provide real-time data on soil moisture, nutrient levels, and pest infestations. Nanotechnology also offers innovative solutions in pest management through the development of nanopesticides. These nanopesticides enable targeted delivery of active ingredients to specific pests or plant structures, reducing off-target effects and environmental contamination. Addressing the challenges of low nutrient use efficiency and environmental pollution associated with conventional fertilizers, nano-fertilizers emerge as a viable solution. Nanotechnology in agriculture presents innovative solutions to enhance crop production, improve resource efficiency, and minimize environmental impact. By harnessing the potential of nanotechnology, these can contribute to global food security, meet the growing demand for food, and maintain sustainable living standards. Continuous research and development in this field are essential in securing our future food supply and building a resilient agricultural system.

Downloads

Download data is not yet available.

References

Abdel-Hakim, S. G., Shehata, A. S. A., Moghannem, S. A., Qadri, M., El-Ghany, M. F. A., Abdeldaym, E. A., & Darwish, O. S. (2023). Nanoparticulate Fertilizers Increase Nutrient Absorption Efficiency and Agro-Physiological Properties of Lettuce Plant. Agronomy, 13(3) 691. https://doi.org/10.3390/agronomy13030691

Amin, R., Siddiqui, M., Skalicky, M., Brestic, M., Hossain, A., Kayesh, E., Popov, M., Hejnak, V., Gupta, D., Mahmud, N. and Islam, T. (2021). Prospects of Nanotechnology in Improving the Productivity and Quality of Horticultural Crops. Horticulturae. 7:332. 10.3390/horticulturae7100332.

Anindita H., Meera Y., Dinesh K.Y., Hardeo S.Y. (2022) An overview of the role of nanoparticles in sustainable agriculture, Biocatalysis and Agricultural Biotechnology.43: 102399 https://doi.org/10.1016/j.bcab.2022.102399.

Beegum, S and Das, S. (2022). Nanosensors in agriculture. Agricultural Nanobiotechnology. Pp.465-478 10.1016/B978-0-323-91908-1.00012-2.

Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver Nanoparticles and Their Antibacterial Applications. International journal of molecular sciences. 22(13)7202. https://doi.org/10.3390/ijms22137202

Bueno C.C., P.S. Garcia, C. Steffens, D.K. Deda, F. de Lima Leite (2017) In Micro and Nano Technologies, Nanoscience and its Applications,Nanosensors.121-153,ISBN 9780323497800, https://doi.org/10.1016/B978-0-323-49780-0.00005-3.

Buja, I., Sabella, E., Monteduro, A. G., Chiriacò, M. S., De Bellis, L., Luvisi, A., & Maruccio, G. (2021). Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics. Sensors, 21(6), 2129. https://doi.org/10.3390/s21062129

Chaud, M., Souto, E. B., Zielinska, A., Severino, P., Batain, F., Oliveira-Junior, J., & Alves, T. (2021). Nanopesticides in Agriculture: Benefits and Challenge in Agricultural Productivity, Toxicological Risks to Human Health and Environment. Toxics. 9(6)131. https://doi.org/10.3390/toxics9060131

Deka, B., Babu, A., Baruah, C., & Barthakur, M. (2021). Nanopesticides: A Systematic Review of Their Prospects with Special Reference to Tea Pest Management. Frontiers in nutrition. 8:686131. https://doi.org/10.3389/fnut.2021.686131

Donald N.D (2005) The Contribution of Breeding to Yield Advances in Maize (Zea mays L.). Advances in Agronomy. 86: 83-145.

El-Saadony, M. T., Abd El-Hack, M. E., Taha, A. E., Fouda, M. M. G., Ajarem, J. S., N Maodaa, S., Allam, A. A., & Elshaer, N. (2020). Ecofriendly Synthesis and Insecticidal Application of Copper Nanoparticles against the Storage Pest Tribolium castaneum. Nanomaterials (Basel, Switzerland). 10(3)587. https://doi.org/10.3390/nano10030587

Fadiji AE, Mthiyane DMN, Onwudiwe DC, Babalola OO. Harnessing the Known and Unknown Impact of Nanotechnology on Enhancing Food Security and Reducing Postharvest Losses: Constraints and Future Prospects. Agronomy. 2022; 12(7):1657.

Fazal Ur Rehman, N., Paker, N. P., Khan, M., Zainab, N., Ali, N., Munis, M. F. H., Iftikhar, M., & Chaudhary, H. J. (2023). Assessment of application of ZnO nanoparticles on physiological profile, root architecture and antioxidant potential of Solanum lycopersicum. Biocatalysis and Agricultural Biotechnology. 53:102874. https://doi.org/10.1016/j.bcab.2023.102874.

Food and Agriculture Organization (FAO). Innovative Technology For Sustainable Food Security Of The United Nations. http://www.fao.org/3/a-i7381e.pdf

Hazarika, A., Yadav, M., Yadav, D. K., & Yadav, H. S. (2022). An overview of the role of nanoparticles in sustainable agriculture. Biocatalysis and Agricultural Biotechnology. 43, 102399. https://doi.org/10.1016/j.bcab.2022.102399.

Hou, Q., Zhang, H., Bao, L., Song, Z., Liu, C., Jiang, Z., & Zheng, Y. (2021). NCs-Delivered Pesticides: A Promising Candidate in Smart Agriculture. International journal of molecular sciences, 22(23), 13043. https://doi.org/10.3390/ijms222313043

Hussain, A., Ali, S., Rizwan, M., et al. (2020). Nanotechnology-Mediated Genetic Engineering of Plants: Recent Advances, Challenges, and Opportunities. Journal of Nanomaterials, ID 2828524. https://doi.org/10.1155/2020/2828524

Hussain, C. M., Hussain, I., Singh, N. B., Singh, A., & Singh, H. (2019). Nanotechnology in Agriculture. CRC Press.

Jakhar, A., Aziz, I., Kaleri, A. R., Hasnain, M., Haider, G., Ma, J, and Abideen, Z. (2022). Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NanoImpact. 27. 10.1016/j.impact.2022.100411

Kah M, & Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int. 63:224-35. doi: 10.1016/j.envint.2013.11.015.

Kanwar, P., and Bajpai, A.K. (2020). Nanotechnology-Based Smart Delivery Systems For Enhancing Crop Productivity in a Nanotechnology for Agriculture. 159-179. Springer, Singapore.

Kumari, A., Rana, V., Yadav, S. K., & Kumar, V. (2023). Nanotechnology as a powerful tool in plant sciences: Recent developments, challenges and perspectives. Plant Nano Biology. 5:100046. https://doi.org/10.1016/j.plana.2023.100046.

Madzokere T.C., Murumbo L.T. and Chiririwa H (2021) Nano-based slow releasing fertilizers for enhanced agricultural productivity. Materialstoday Procedings. 45(3) 3709-3715

Martirosyan, A & Schneider, Yves-Jacques. (2014). Engineered Nanomaterials in Food: Implications for Food Safety and Consumer Health. International Journal of Environmental Research and Public Health. 11:5720-5750. 10.3390/ijerph110605720.

Mittal D, Kaur G, Singh P, Yadav K and Ali SA (2020) Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Front. Nanotechnol. 2:579954

Mohamed T. El-Saadony, Ameina S. ALmoshadak, Manal E. Shafi, Najah M. Albaqami, Ahmed M. Saad, Amira M. El-Tahan, El-Sayed M. Desoky, Ahmed S.M. Elnahal, Aisha Almakas, Taia A. Abd El-Mageed, Ayman E. Taha, Ahmed S. Elrys, Ayman M. H.(2021) Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi Journal of Biological Sciences.28(12):7349-7359. https://doi.org/10.1016/j.sjbs.2021.08.032.

Mohd, J., A. H, Ravi P. S, Shanay R. and Rajiv S. (2021) Exploring the potential of nanosensors: A brief overview. Sensors International.2:100130 https://doi.org/10.1016/j.sintl.2021.100130.

Mohammad K.H., Jannat S. and Golam J.A. (2020) Nanomaterials and soil health for agricultural crop production: current status and future prospects. Nanomaterials for Agriculture and Forestry Applications. Pp.289-312

Nongbet, A., Mishra, A. K., Mohanta, Y. K., Mahanta, S., Ray, M. K., Khan, M., Baek, K.-H., & Chakrabartty, I. (2022). Nanofertilizers: A Smart and Sustainable Attribute to Modern Agriculture. Plants, 11(19), 2587. https://doi.org/10.3390/plants11192587

Nuruzzaman, M., Rahman, M. M., Liu, Y, and Naidu, R. (2016). Nanoencapsulation, Nano-Guard for Pesticides: A New Window for Safe Application. Journal of agricultural and food chemistry. 64(7) 10.1021/acs.jafc.5b05214.

Pradhan, S. and Mailapalli, D. (2020). Nanopesticides for Pest Control. Sustainable Agriculture Reviews 40:43-74. 10.1007/978-3-030-33281-5_2.

Prasad, R., Bhattacharyya, A., and Nguyen, Q. D. (2017). Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Frontiers in microbiology. 8: 1014. https://doi.org/10.3389/fmicb.2017.01014

Pravin V., Tumirah K., Rosazlin A, and Noraini A. (2021). Controlled release fertilizer: A review on developments, applications and potential in Agriculture. Journal of Controlled Release. 339:321-334. https://doi.org/10.1016/j.jconrel.2021.10.003

Ramesh, M., Janani, R., Deepa, C., and Rajeshkumar, L. (2022). Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. Biosensors.13(1), 40. https://doi.org/10.3390/bios13010040

Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry. 59(8), 3485-3498.

Sadak, M. S. (2019). Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bulletin of the National Research Centre. 43:38. https://doi.org/10.1186/s42269-019-0077-y

Sadeghi, R.; Rodriguez, R.J.; Yao, Y.; Kokini, J.L. (2017). Advances in nanotechnology as they pertain to food and agriculture: Benefits and risks. Annu. Rev. Food Sci. Technol. 8:467–492.

Safdar, M., Kim, W., and Park, S., (2022). Engineering plants with carbon nanotubes: a sustainable agriculture approach. Journal of Nanobiotechnology. 20:275. https://doi.org/10.1186/s12951-022-01483-w

Saharan, V., Pal, A., Sharma, S. K., Kumar, H., Prasad, R., & Das, A. (2019). Nanotechnology in Plant Disease Management: A Sustainable Approach. Frontiers in Plant Science. 10:1316. https://doi.org/10.3389/fpls.2019.01316

Senapaty, M. K., Ray, A., & Padhy, N. (2023). IoT-Enabled Soil Nutrient Analysis and Crop Recommendation Model for Precision Agriculture. Computers, 12(3)61. https://doi.org/10.3390/computers12030061

Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of Nanotechnology in Plant Growth and Crop Protection: A Review. Molecules (Basel, Switzerland. 24(14), 2558.

Shitharth, S., Pratiksha M., Pravin R. Kshirsagar, Hariprasath. M, Vineet. T., Venkatesa P. S. (2021) Impact of Big Data Analysis on Nanosensors for Applied Sciences Using Neural Networks, Journal of Nanomaterials. 9:23-37 https://doi.org/10.1155/2021/4927607

Siddiqui M.H., Mohamed H. A., Mohammad F. and Mutahhar Y. A. (2015) Role of Nanoparticles in Plants. Nanotechnology and Plant Sciences. Pp 19-35.

Stone, V., Nowack, B., Baun, A., van den Brink, N., Kammer, F.v, Dusinska, M., Handy, R., Hankin, S., Hassellöv, M., Joner, E., & Fernandes, T. F. (2010). Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. The Science of the total environment, 408(7), 1745–1754. https://doi.org/10.1016/j.scitotenv.2009.10.035

The 2030 Agenda for Sustainable Development - Goal 2 of the UN's 2030 Agenda for Sustainable Development aims to end hunger, achieve food security and improved nutrition, and promote sustainable agriculture, highlighting the importance of addressing food security in the context of broader sustainable development goals (2021).

The Food and Agriculture Organization of the United Nations (FAO) (2021) - The FAO is a specialized UN agency that works to promote food security and sustainable agriculture, providing technical assistance, policy advice, and capacity building to governments and other stakeholders.

The Food Systems Summit (2021) - This UN-led summit aims to catalyze global action to transform food systems to ensure food security, improve nutrition, and promote sustainable agriculture.

The Global Food Security Index (2021) - This report from the Economist Intelligence Unit provides an annual ranking of countries based on their food security performance, taking into account factors such as food affordability, availability, and quality.

The World Food Programme (WFP) - The WFP is a UN agency that works to address hunger and food insecurity in crisis-affected countries around the world, providing emergency food assistance, improving access to education and health services, and supporting the development of sustainable food systems (2021).

United Nations. (2023). World Population Prospects 2019: Highlights. Department of Economic and Social Affairs, Population Division.

Usman, Muhammad & Farooq, Muhammad & Wakeel, Abdul & Ahmad, Nawaz & Alam, Sardar & Rehman, Hafeez & Ashraf, Imran & Sanaullah, Muhammad. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of The Total Environment. 721. 137778. 10.1016/j.scitotenv.2020.137778.

Wang, D., Saleh, N. B., Byro, A., Zepp, R., Sahle-Demessie, E., Luxton, T. P., Ho, K. T., Burgess, R. M., Flury, M., White, J. C., & Su, C. (2022). Nano-enabled pesticides for sustainable agriculture and global food security. Nature nanotechnology. 17(4), 347–360. https://doi.org/10.1038/s41565-022-01082-8

Wang, Y., Cui, H., Li, K., Sun, C., Du, W., & Cui, J. (2014). A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells. PLoS One 9: e102886. doi: 10.1371/journal.pone.0102886

Yadav, A., Yadav, K., Ahmad, R., & Abd-Elsalam, K. A. (2023). Emerging Frontiers in Nanotechnology for Precision Agriculture: Advancements, Hurdles and Prospects. Agrochemicals. 2(2) 220–256. https://doi.org/10.3390/agrochemicals2020016

Yeshe, A., Vaidya, P.H., G.U., Shinde & Gourkhede, P. (2022). Application of Wireless Nano Sensors Network and Nanotechnology in Precision Agriculture: Review. International Journal of Advances in Agricultural Science and Technology. 9:36-65. 10.47856/ijaast. 2022.v09i04.004.

Zahedi, S. M., Karimi, M., & Teixeira da Silva, J. (2020). The use of nanotechnology to increase quality and yield of fruit crops. Journal of the Science of Food and Agriculture.100:25-31. https://doi.org/10.1002/jsfa.10004.

Zhao, J., Song, R., Li, H., Zheng, Q., Li, S., Liu, L., Li, X., Bai, L., & Liu, K. (2022). New Formulation to Accelerate the Degradation of Pesticide Residues: Composite Nanoparticles of Imidacloprid and 24-Epibrassinolide. ACS omega, 7(33):29027–29037. https://doi.org/10.1021/acsomega.2c02820

Downloads

Published

10-06-2024

How to Cite

APPLICATIONS OF NANOBREEDING FOR THE ENHANCEMENT OF FOOD SECURITY. (2024). FULafia Journal of Science and Technology , 8(1), 52-58. https://doi.org/10.62050/fjst2024.v8n1.267

Most read articles by the same author(s)

Similar Articles

1-10 of 21

You may also start an advanced similarity search for this article.