Habitat Characterization of Culicine Mosquitoes in Two Local Government Areas of Nasarawa State, Nigeria

Authors

  • Adejoh, Victor Ameh Department of Zoology, Faculty of Science, Federal University of Lafia, Nasarawa State, Nigeria. PMB 146 Makurdi Road, Gandu, Lafia Nasarawa State, Nigeria. Author https://orcid.org/0000-0001-9992-485X
  • Pam, Victoria Adamu Department of Zoology, Faculty of Science, Federal University of Lafia, Nasarawa State, Nigeria. PMB 146 Makurdi Road, Gandu, Lafia Nasarawa State, Nigeria. Author https://orcid.org/0009-0004-7600-5673
  • Ombugadu Akwashiki Department of Zoology, Faculty of Science, Federal University of Lafia, Nasarawa State, Nigeria. PMB 146 Makurdi Road, Gandu, Lafia Nasarawa State, Nigeria. Author https://orcid.org/0000-0002-0130-1185
  • Maikenti, James Ishaku Department of Zoology, Faculty of Science, Federal University of Lafia, Nasarawa State, Nigeria. PMB 146 Makurdi Road, Gandu, Lafia Nasarawa State, Nigeria. Author https://orcid.org/0000-0002-7441-7808
  • Ashigar, A. Mohammed Department of Zoology, Faculty of Science, Federal University of Lafia, Nasarawa State, Nigeria. PMB 146 Makurdi Road, Gandu, Lafia Nasarawa State, Nigeria. Author https://orcid.org/0000-0001-6638-5685

DOI:

https://doi.org/10.62050/fjst2025.v9n1.505

Keywords:

Anopheles, Aedes, Culex, habitat characterization, Nasarawa State

Abstract

Mosquitoes are major vectors of disease, with their abundance influenced by ecological and environmental factors. This study assessed the habitat characterization and abundance of mosquito species in Awe and Nasarawa Eggon LGAs, Nasarawa State, Nigeria. Larvae were sampled monthly from July 2023 to June 2024 using standard dipping techniques, and physicochemical parameters of breeding sites were analyzed. A total of 2,158 mosquito larvae were collected, with culicines significantly (P < 0.001) accounting for 90.08% while anophelines accounted for 9.92% of the population. Among the emerged adult culicines, Culex quinquefasciatus (76.67%) was significantly (P < 0.001) more abundant followed by Anopheles gambiae (13.40%), while An. funestus had the lowest emergence rate at 1.97%. Puddle habitats (47.21%) supported the highest mosquito abundance, followed by rice fields (34.99%), while animal hoof prints (0.79%) had the least mosquito abundance. Therefore, habitat type significantly (P = 0.037) influenced mosquito abundance in both LGAs. The highest larval abundance was recorded at a 351–400 m (36.52%) gradient from human dwellings, but distance significantly (P = 0.625) influence larval abundance. Physicochemical parameters such as temperature, pH, total dissolved solids, and dissolved oxygen exhibited varied correlations with mosquito abundance, with significant effects in some habitats. These findings highlight the need for targeted vector control strategies, particularly habitat modification and public health interventions, to reduce
mosquito proliferation and mitigate disease transmission risks in the study area.

Downloads

Download data is not yet available.

References

Abdullaahi, Y., Fana, S., Umar, Y., & Batagarawa, U. (2020). Prevalence of Mosquitoes in Gidan Yunfa Community of Usmanu Danfodiyo University, Sokoto, Nigeria. Path of Science. https://doi.org/10.22178/pos.58-10.

Amao, H., Idowu, E., & Otubanjo, O. (2022). Correlation between physicochemical parameters and larval abundance of Culex quinquefasciatus Say in Lagos State, Nigeria. African Journal of Biological Sciences. https://doi.org/10.33472/afjbs.4.3.2022.41-51.

American Public Health Association (APHA). (1998). Standard Methods for the Examination of Water and Wastewater. 20th Edition., American Public Health Association, Washington, DC., USA., pp. 1-541.

Badolo, A., Sombié, A., Yaméogo, F., Wangrawa, D., Sanon, A., Pignatelli, P., Sanon, A., Viana, M., Kanuka, H., Weetman, D., & McCall, P. (2022). First comprehensive analysis of Aedes aegypti bionomics during an arbovirus outbreak in west Africa: Dengue in Ouagadougou, Burkina Faso, 2016–2017. PLoS Neglected Tropical Diseases, 16. https://doi.org/10.1371/journal.pntd.0010059.

Balthazar, T., Maia, D., Oliveira, A., Marques, W., Bastos, A., Vilela, M., & Mallet, J. (2021). Entomological surveillance of mosquitoes (Diptera: Culicidae), vectors of arboviruses, in an ecotourism park in Cachoeiras de Macacu, state of Rio de Janeiro-RJ, Brazil. PLoS ONE, 16. https://doi.org/10.1371/journal.pone.0261244.

Bimbol, N. L. & Marcus, N. D. (2010). Geography of Nasarawa State: A study of Flora and Fauna. Root Books and Journal, 4-12. http://hdl.handle.net/123456789/1441.

Busari, L., Raheem, H., Iwalewa, Z., Fasasi, K., & Adeleke, M. (2023). Investigating insecticide susceptibility status of adult mosquitoes against some class of insecticides in Osogbo metropolis, Osun State, Nigeria. PLOS ONE, 18. https://doi.org/10.1371/journal.pone.0285605.

Chura, M., Healy, K., Diaz, R., & Kaller, M. (2023). Effects of species, sex, and diet on thermal tolerance of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Journal of Medical Entomology, 60, 637 - 643. https://doi.org/10.1093/jme/tjad037.

DeSiervo, M., Finger-Higgens, R., Ayres, M., Virginia, R., & Culler, L. (2022). Spatial and temporal patterns in Arctic mosquito abundance. Ecological Entomology, 48, 19 - 30. https://doi.org/10.1111/een.13198.

Egwu, O., Ohaeri, C. C., Amaechi, E. C. & Ehisianya, C. N. (2018). Distribution and Abundance of Mosquito Larvae in Ohafia, Abia State, Nigeria. Cuadernos de Investigación UNED, 10(2), 379-385. DOI: https://doi.org/10.22458/urj.v10i2.2166.

Ekedo, C. M., Okore O. O., Uzoma, V. C. & Okoro P. I. (2020). Habitat Preference of Mosquito Larvae in Michael Okpara University of Agriculture, Umudike, Nigeria. International Journal of Mosquito Research, 7(4), 06-09. ISSN: 2348-5906.

Fagbohun, I., Idowu, E., Awolola, T., & Otubanjo, O. (2020). Seasonal abundance and larval habitats characterization of mosquito species in Lagos State, Nigeria, Scientific African, 10. https://doi.org/10.1016/j.sciaf.2020.e00656.

Garba, Y. (2023). Distribution of the African Malaria Vectors (Anopheline Mosquitoes) in Kontagora, North Central Nigeria. Journal of Applied Sciences and Environmental Management. https://doi.org/10.4314/jasem.v27i4.21.

Gillies, M. T. & Coetzee, B. A. (1987). Supplementary to Anophelinae of Africa, South of Sahara (Afro-Tropical Region). Publication of the South Africa Institute of Medical Research, 55, 1-143.

Hinne, I., Attah, S., Mensah, B., Forson, A., & Afrane, Y. (2021). Larval habitat diversity and Anopheles mosquito species distribution in different ecological zones in Ghana. Parasites & Vectors, 14. https://doi.org/10.1186/s13071-021-04701-w.

Jeanrenraud, A., Letinić, B., Mollett, J., Brooke, B., & Oliver, S. (2023). The effect of pollution on the competitive dynamics of Anopheles arabiensis Patton, 1905 and Culex quinquefasciatus Say, 1823 (Diptera: Culicidae). African Entomology. https://doi.org/10.17159/2254-8854/2023/a10656.

Juache-Villagrana, A., De La Mora-Covarrubias, A., Escárcega-Ávila, A., & -Vega, F. (2020). Host selection of Aedes aegypti and Culex quinquefasciatus females in a semi-desert environment in Northern Mexico. International Journal of Tropical Insect Science, 41, 55-63. https://doi.org/10.1007/s42690-020-00175-y.

Kameke, D., Kampen, H., Wacker, A., & Werner, D. (2021). Field studies on breeding sites of CulicoidesLatreille (Diptera: Ceratopogonidae) in agriculturally used and natural habitats. Scientific Reports, 11. https://doi.org/10.1038/s41598-021-86163-9.

Kinga, H., Kengne-Ouafo, J., King, S., Egyirifa, R., Aboagye-Antwi, F., & Akorli, J. (2022). Water Physicochemical Parameters and Microbial Composition Distinguish Anopheles and Culex Mosquito Breeding Sites: Potential as Ecological Markers for Larval Source Surveillance. Journal of Medical Entomology, 59, 1817 - 1826. https://doi.org/10.1093/jme/tjac115.

Munyao, V., Karisa, J., Munyao, C., Ngari, M., Menza, N., Peshu, N., Rono, M., Mbogo, C., & Mwangangi, J. (2020). Surveillance of Culicine Mosquitoes in Six Villages of Taita-Taveta County, Kenya, With Host Determinations From Blood-Fed Females. Journal of Medical Entomology, 57, 1972 - 1982. https://doi.org/10.1093/jme/tjaa109.

Nambunga, I., Ngowo, H., Mapua, S., Hape, E., Msugupakulya, B., Msaky, D., Mhumbira, N., Mchwembo, K., Tamayamali, G., Mlembe, S., Njalambaha, R., Lwetoijera, D., Finda, M., Govella, N., Matoke-Muhia, D., Kaindoa, E., & Okumu, F. (2020). Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania. Malaria Journal. https://doi.org/10.1186/s12936-020-03295-5.

Ngadjeu, C., Doumbe-Belisse, P., Talipouo, A., Djamouko-Djonkam, L., Awono-Ambene, P., Kekeunou, S., Toussile, W., Wondji, C., & Antonio-Nkondjio, C. (2020). Influence of house characteristics on mosquito distribution and malaria transmission in the city of Yaoundé, Cameroon. Malaria Journal, 19. https://doi.org/10.1186/s12936-020-3133-z.

Nwonumara, G., & Nwele, D. (2021). Mosquito larvae breeding habitat as hitch to the fight against malaria in Onicha Igbeze and its Environ, Ebonyi State, Nigeria. International Journal of Tropical Insect Science, 41, 2489 - 2499. https://doi.org/10.1007/s42690-021-00428-4.

Obi, O., Nock, I., & Adebote, D. (2019). Ecology of Preimaginal Culicine Mosquitoes in Rock Pools on Inselbergs Within Kaduna State, Nigeria. Journal of Mosquito Research. https://doi.org/10.5376/JMR.2019.09.0005.

Oduwole, O., Oringanje, C., Oduola, A., Nwachuku, N., Meremikwu, M., & Alaribe, A. (2020). Species Composition of Anopheles (Diptera: Culicidae) in Selected Forested Tourist Areas of Nigeria Endemic for Malaria. Journal of Medical Entomology, 57, 2007 - 2010. https://doi.org/10.1093/jme/tjaa110.

Oforka, C., Omotayo, A., & Adeleke, M. (2024). Seasonal Diversity in Mosquito Larval Ecology and Its Public Health Implications in Urban Slums of Lagos, Nigeria.. The American journal of tropical medicine and hygiene. https://doi.org/10.4269/ajtmh.23-0192.

Omar, A., Dalhatu, A., Kafi, S., & Aliyu, U. (2022). Assessment of mosquito larval habitats, species abundance and diversity in Azare, Katagum Local Government Area, Bauchi State, Nigeria. Gadau Journal of Pure and Allied Sciences. https://doi.org/10.54117/gjpas.v1i2.14.

Radl, J., Villegas, L., Smith, J., Tirpak, R., Perry, K., Wetmore, D., Tunis, E., Smithberger, J., Schuellerman, H., Magistrado, D., Winston, R., & Short, S. (2024). Mosquito abundance and diversity in central Ohio, USA vary among stormwater wetlands, retention ponds, and detention ponds and their associated environmental parameters. PLOS ONE, 19. https://doi.org/10.1371/journal.pone.0305399.

Rodríguez-Ruano, S., Juhaňáková, E., Vávra, J., & Nováková, E. (2020). Methodological Insight into Mosquito Microbiome Studies. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00086.

Seal, M., & Chatterjee, S. (2023). Combined effect of physico-chemical and microbial quality of breeding habitat water on oviposition of malarial vector Anopheles subpictus. PLOS ONE, 18. https://doi.org/10.1371/journal.pone.0282825.

Sossou, K., Chouti, W., Djogbénou, L., Akoton, R., & Kelome, C. (2022). Impact of Fluoridated Waters on the Density of Mosquito Larvae in the Municipality of Dassa-Zoume in Benin. American Journal of Water Resources. https://doi.org/10.12691/ajwr-10-2-2.

Van Schoor, T., Kelly, E., Tam, N., & Attardo, G. (2020). Impacts of Dietary Nutritional Composition on Larval Development and Adult Body Composition in the Yellow Fever Mosquito (Aedes aegypti). Insects, 11. https://doi.org/10.3390/insects11080535.

Wang, Y., Cheng, P., Jiao, B., Song, X., Wang, H., Wang, H., Wang, H., Huang, X., Liu, H., & Gong, M. (2020). Investigation of mosquito larval habitats and insecticide resistance in an area with a high incidence of mosquito-borne diseases in Jining, Shandong Province. PLoS ONE, 15. https://doi.org/10.1371/journal.pone.0229764.

Weidig, N., Miller, A., & Parker, A. (2022). The Goldilocks principle: Finding the balance between water volume and nutrients for ovipositing Culex mosquitoes (Diptera: Culicidae). PLOS ONE, 17. https://doi.org/10.1371/journal.pone.0277237.

Downloads

Published

08-05-2025

How to Cite

Habitat Characterization of Culicine Mosquitoes in Two Local Government Areas of Nasarawa State, Nigeria. (2025). FULafia Journal of Science and Technology , 9(1), 72-80. https://doi.org/10.62050/fjst2025.v9n1.505

Most read articles by the same author(s)

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

Similar Articles

1-10 of 183

You may also start an advanced similarity search for this article.