Health Benefits of Nutritional Composition of Cocoyam (Colocasia esculanta) Tuber and Leaves
A Comparative Study
DOI:
https://doi.org/10.62050/fscp2024.451Keywords:
Amino Acid Composition,, Nutritional Value, Phytochemical Properties, Cocoyam (Colocasia esculenta)Abstract
This study investigated the proximate composition, phytochemical content, and amino acid profiles of cocoyam (Colocasia esculenta) tuber and leaves. Proximate analysis revealed that the samples contained 16.63% crude protein, 3.19% fat, 8.38% ash, 6.37% crude fiber, 6.51% moisture, and 58.94% carbohydrate on average. Phytochemical screening identified the presence of oxalates, saponins, alkaloids, flavonoids, tannins, and cyanide in varying concentrations. Amino acid profiling showed that the samples contained all essential amino acids with leucine (6.99%), lysine (4.46%), and isoleucine (4.21%) being the most abundant. Glutamic acid (10.29%) and aspartic acid (8.87%) were the predominant non-essential amino acids. The total amino acid content ranged from 54.84 to 74.85 g/100g protein. Essential amino acid scores indicated that most amino acids met or exceeded FAO/WHO reference values, with phenylalanine + tyrosine having the highest score. The study reveals that cocoyam tubers are excellent sources of energy, while the leaves are significantly higher in protein and essential amino acids than other widely consumed leaves, highlighting its potential as some nutrient-dense food source rich in essential amino acids and carbohydrates.
References
Wokocha, R. C., & Aduo, B. C. (2011). Pathogenicity of fungi associated with the cocoyam root rot blight complex in South-Eastern Nigeria. Agro-Science Journal of Tropical Agriculture, Food, Environment and Extension, 10(3), 49–54. ISSN 1119-7455. https://doi.org/10.4314/as.v10i3.7
Otekunrin, O. A., Sawicka, B., Adeyonu, A., & Otekunrin, O. A. (2021). Cocoyam [Colocasia esculenta (L.) Schott]. https://doi.org/10.13140/RG.2.2.22250.85444
Nwanekezi, E. C., Owuamanam, C. I., Ihediohanm, N. C., & Iwouno, J. O. (2010). Functional, Particle Size and Sorption Isotherm of Cocoyam Cormel Flours. Pakistan Journal of Nutrition, 9(10), 973–979. https://doi.org/10.3923/pjn.2010.973.979
Boakye, A. A., Wireko-Manu, F. D., Oduro, I., Ellis, W. O., Gudjónsdóttir, M., & Chronakis, I. S. (2018). Utilizing cocoyam (Xanthosoma sagittifolium) for food and nutrition security: A review. Food Science & Nutrition, 6(4), 703–713. https://doi.org/10.1002/fsn3.602
Osahon, E. E., & Odoemelam, L. E. (2019). Extent of utilization of cocoyam value-added technologies among rural households in South-East Nigeria. Nigerian Agricultural Journal, 50(2), 233–240.
Onyeka, J. (2014). Status of Cocoyam (Colocasia esculenta and Xanthosoma spp) in West and Central Africa: Production, Household Importance and the Threat from Leaf Blight.
CGIAR. (2020). Cocoyam has huge market, but few farmers cultivate it. Retrieved on 28/12/2024 from https://www.rtb.cgiar.org/news/cocoyam-has-huge-market-but-few-farmers-cultivate-it/
Aminu, F. O., & David, M. O. (2021). Effect of climate change variables on cocoyam farming in Southwest Nigeria. Nepalese Journal of Agricultural Sciences, 20, 91.
Alabi, A. O., Awotunde, J. M., Adekunle, A. A., & Adeoye, A. S. (2019). Approaches for improving cocoyam production and utilization among rural farmers in Ogun and Oyo State, Nigeria. Journal of Biology, Agriculture and Healthcare, 9(24). https://doi.org/10.7176/jbah/9-24-03
AOAC (Association of Official Analytical Chemists), (1980). Official Method of Analysis of the AOAC (W.Horwitz Editor) Thirteenth Edition. Washington D.C, AOAC.
AOAC (Association of Official Analytical Chemists), (2006). Official Method of Analysis -of the AOAC (W.Horwitz Editor) Eighteenth Edition. Washighton D.C, AOAC
Paul, A. A., & Southgate, D. A. T. (1978). McCance and Widdowson's The Composition of Foods (4th ed.). Elsevier/North Holland Biomedical Press.
Olaofe, O., & Akintayo, E. T. (2000). Prediction of isoelectric points of legume and oilseed proteins from their amino acid composition. Journal of Technoscience, 4, 49–53
Food and Agriculture Organization of the United Nations/World Health Organization. (1991). Protein quality evaluation: Report of the Joint FAO/WHO Expert Consultation. FAO Food and Nutrition Paper No. 51
Alsmeyer, R. H., Cunningham, A. E., & Happich, M. L. (1974). Equations to predict protein efficiency ratio (PER) from amino acid analysis. Food Technology, 28(7), 34–38.
Adeyanju, J. A., Babarinde, G. O., Abioye, A. O., Olajire, A. S., & Bolarinwa, I. D. (2019). Cocoyam processing: Food uses and industrial benefits. International Journal of Scientific & Engineering Research, 10(9), 1658. ISSN 2229-5518.
Wada, E., Feyissa, T., & Tesfaye, K. (2019). Proximate, mineral and antinutrient contents of cocoyam (Xanthosoma sagittifolium (L.) Schott) from Ethiopia. International Journal of Food Science, Article 8965476. https://doi.org/10.1155/2019/8965476
Olaleye, L. D., Owolabi, B. J., Adesina, A. O., & Isiaka, A. A. (2013). Chemical composition of red and white cocoyam (Colocosia esculenta) Leaves. International Journal of Science and Research, 2(11), 121 – 126. View at Google Scholar
Igbabul, B. D., Amove, J., & Twadue, I. (2014). Effect of fermentation on the proximate composition, antinutritional factors and functional properties of cocoyam (Colocasia esculenta) flour. African Journal of Food Science and Technology, 5(2), 67-74. http://dx.doi.org/10.14303/ajfst.2014.016
Awa, E., & Eleazu, C. (2015). Bioactive constituents and antioxidant activities of raw and processed cocoyam (Colocasia esculenta). Nutrafoods, 14(3-4), 133–140. https://doi.org/10.1007/s13749-015-0033-x
Gowthamraj, G., Raasmika, M., & Narayanasamy, S. (2021). The outcome of processing methods on the quality characteristics of processed finger millet flour for developing low-protein food supplements. Journal of Food Science and Technology, 58(8), 3223–3234. https://doi.org/10.1007/s13197-020-04826-3
Bradbury, H., & Holloway, W. D. (1988). Chemistry of Tropical Root Crops: Significance for Nutrition and Agriculture in the Pacific. ACIAR Project, Link.
Onyeike, E. N., Akaninwor, J. O., & Ifemeje, J. C. (2008). Effect of heat processing on the proximate composition and energy values of selected Nigerian staple foods from oil-producing areas of the Niger Delta. Biokemistri, 20(1), 1–9. http://www.bioline.org.br/bk
Olatunde, K. A., Adebayo, K., Muhumuza, J., & Bada, B. S. (2018). Assessment of variability in proximate/anti-nutritive composition of cocoyam within Nigeria and Uganda. Journal of Applied Sciences and Environmental Management, 22(5), 737–739. https://doi.org/10.4314/jasem.v22i5.20
Adane, T., Shimelis, A., Negussie, R., Tilahun, B., & Haki, G. D. (2013). Effect of processing method on the proximate composition, mineral content and antinutritional factors of taro (Colocasia esculenta, L.) grown in Ethiopia. African Journal of Food, Agriculture, Nutrition and Development, 13(2). https://doi.org/10.18697/ajfand.57.10345
Chai, W., & Liebman, M. (2005). Effect of Different Cooking Methods on Vegetable Oxalate …..Content. Journal of Agricultural and Food Chemistry, 53(8), 3027–3030. https://doi.org/10.1021/jf048128d
Savage, G. and Noonan, S. (2009). Oxalate content of food and its effect on humans. Asian Pacific Journal of Clinical Nutrition. 8(1):64-74
Enechi, O. C., Odo, C. E., & Oburu, C. S. (2014). Concentrations of anti-nutritional factors in raw edible cocoyam (Colocasia esculenta) leaves. Journal of Pharmacy Research, 8(1), 38–40.
Shi, J., Arunasalam, K., Yeung, D., Kakuda, Y., Mittal, G., & Jiang, Y. (2004). Saponins from Edible Legumes: Chemistry, Processing, and Health Benefits. Journal of Medicinal Food, 7(1), 67–78. https://doi.org/10.1089/109662004322984734
Okechukwu, K. E., & Ogah, U. S. (2023). Phytochemical, vitamins and toxic level of processed cocoyam (colocasia esculenta (L.) Schott) inflorescence. MOJ Food Process Technols, 11(2), 116–128. https://doi.org/10.15406/mojfpt.2023.11.00289
Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
Lattanzio, V. (2013). Phenolic Compounds: Introduction. In K. G. Ramawat, & J.-M. Mérillon (Eds.), Natural Products (1543-1580). Springer. https://doi.org/10.1007/978-3-642-22144-6_57
Temesgen, M., Retta, N., & Tesfaye, E. (2021). Amino acid and fatty acid composition of Ethiopian taro. American Journal of Food Science and Nutrition, 3(1), 46-58. https://doi.org/10.47672/ajfsn.217
Drummond, M. J., & Rasmussen, B. B. (2008). Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signaling and human skeletal muscle protein synthesis. Current Opinion in Clinical Nutrition and Metabolic Care, 11(3), 222–226. https://doi.org/10.1097/mco.0b013e3282fa17fb
Arowora, K. A., Ezeonu C. S., Imo, C. and Nkaa, C. G. (2017). Protein levels and amino Acids composition in some leaf vegetables sold at Wukari in Taraba State, Nigeria. Int. J. of Biol. Sci. and Applications, 4(2), 19-24. https://www.researchgate.net/publication/317578379
Aremu, A. O., Omogbene, T. O., Fadiji, T., & others. (2024). Plants as an alternative to the use of chemicals for crop protection against biotic threats: Trends and future perspectives. European Journal of Plant Pathology. https://doi.org/10.1007/s10658-024-02924-y
Aaslyng, M. D., Dam, A. B., Petersen, I. L., & Christoffersen, T. (2023). Protein content and amino acid composition in the diet of Danish vegans: A cross-sectional study. BMC Nutrition, 9(131). https://doi.org/10.1186/s40795-023-00793-y
Aremu, M. O., Abeekaa, L. P., Zando, C., Obasi, B. C., Aremu, D. O., Passali, D. B., & Omotehinwa, F. H. (2023). Proximate, phytochemical and amino acid compositions of Sodom apple (Calotropis procera) leaves and fruits. Lafia Journal of Science and Innovative Research, 1(2). https://doi.org/10.62050/ljsir2023.v1n2.271
Hsu, J. W.-C., Ball, R. O., & Pencharz, P. B. (2007). Evidence That Phenylalanine May Not Provide the Full Needs for Aromatic Amino Acids in Children. Pediatric Research, 61(3), 361–365. https://doi.org/10.1203/pdr.0b013e318030d0db
Richard, K. A., Elisha C. S., Imo, C. and Nkaa, C. G. (2009). Protein levels and amino Acids composition in some leaf vegetables sold at Wukari in Taraba State, Nigeria. Int. J. of Biol. Sci. and Applications, 4(2), 29-34. https://www.researchgate.net/publication/317578379
Vettore, L. A., Westbrook, R. L., & Tennant, D. A. (2021). Proline metabolism and redox: Maintaining a balance in health and disease. Amino Acids, 53(11), 1779–1788. https://doi.org/10.1007/s00726-021-03051-2
Fernstrom, J. D. (2000). Can nutrient supplements modify brain function? The American Journal of Clinical Nutrition, 71(6), 1669S–1673S. https://doi.org/10.1093/ajcn/71.6.1669S
Khan M. E., and Bassey E. E. (2015). Amino acid profile of Bombax Buonopozense (West African Bombax) Leaves. Dir. Res. J. Agric. Food Sci. 3(12): 211-216.
Omoyeni, M. D., Mark, A. B., Petersen, I. L., & Christoffersen, T. (2015). Protein content and amino acid composition in the diet of Danish vegans: A cross-sectional study. BMC Nutrition, 9(131). https://doi.org/10.1186/s40795-023-00793-y
Cox, M. M. & Nelson D. L. (2011). Lehninger Principles of Biochemistry, 5th edn. W. H. Freeman and Company, New York
Finkelstein, J. D. (2007). Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine. Clinical Chemistry and Laboratory Medicine (CCLM), 45(12), 1694-1699. https://doi.org/10.1515/cclm.2007.341
Wu, Z.-Y., Monro, A. K., Milne, R. I., Wang, H., Yi, T.-S., Liu, J., & Li, D.-Z. (2013). Protein levels and amino Acids composition in some leaf vegetables sold at Wukari in Taraba State, Nigeria. Int. J. of Biol. Sci. and Applications, 4(2), 19-24.
Wang, W., Wu, Z., Dai, Z., Yang, Y., Wang, J., & Wu, G. (2013). Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids, 45(3), 463–477. https://doi.org/10.1007/s00726-013-1493-1
Yin, Y., Li, F., Yi, R., Guan, Y., Yang, G., & Liu, Z. (2014). Threonine metabolism in animals: mechanisms and functions. Frontiers in Bioscience, 19, 1050-1063.
Moffett, J., Ross, B., Arun, P., Madhavarao, C., & Namboodiri, A. (2007). N-Acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Progress in Neurobiology, 81(2), 89–131. https://doi.org/10.1016/j.pneurobio.2006.12.003
Reeds, P. J., Burrin, D. G., Stoll, B., & Jahoor, F. (2000). Intestinal Glutamate Metabolism. The Journal of Nutrition, 130(4), 978S-982S. https://doi.org/10.1093/jn/130.4.978s
Aremu, M. O., Nweze, C. C., & Alade, P. (2011). Evaluation of protein and amino acid composition of selected spices grown in the Middle Belt region of Nigeria. Pakistan Journal of Nutrition, 10(10), 991–995. https://doi.org/10.3923/pjn.2011.991.995
Friedman, M. (1996). Nutritional Value of Proteins from Different Food Sources. A Review. Journal of Agricultural and Food Chemistry, 44(1), 6–29. https://doi.org/10.1021/jf9400167
Paoletti, A., Courtney-Martin, G., & Elango, R. (2024). Determining amino acid requirements in humans. Frontiers in Nutrition, 11, 1400719. https://doi.org/10.3389/fnut.2024.1400719
Doss, A., Tresina, P. S., & Mohan, V. R. (2019). Amino acid composition of wild yam (Dioscorea spp.). Food Research, 3(5), 617–621. https://doi.org/10.26656/fr.2017.3(5).119

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Proceedings of the Faculty of Science Conferences

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.