Cosmic Radiation Exposure and Health Risks for Passengers on Flights Over Nigeria
DOI:
https://doi.org/10.62050/fscp2024.584الكلمات المفتاحية:
Aviation altitude، Air shower، Cosmic rays، Effective doseالملخص
This study calculated the absorbed dose and effective doses of cosmic radiation at an aviation altitude of 12 km over Nigeria. We considered galactic cosmic rays (GCR), solar energetic particles (SEP), and atmospheric cosmic rays (ACR). The results indicate that dose rates increase with altitude and latitude, reaching a maximum of 1.93 μSv/h during solar minimum and 1.63 μSv/h during solar maximum. The calculations show that a passenger flying 200 hours per year between Abuja and Lagos would accumulate 0.39 mSv/year of cosmic rays. Although this is less than the recommended dose of 1 mSv/year for non-radiation-exposed persons, passengers travelling at the same rate would accumulate 1.55 mSv in four years. This long-term exposure could be detrimental to health, potentially leading to tissue degenerative diseases and cancer. The results of this study provide insights for assessing and mitigating radiation exposure risks in aviation
المراجع
Usoskin, I. G., & Kovaltsov, G. A. (2006). Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications. Journal of Geophysical Research: Atmospheres, 111(D21). https://doi.org/10.1029/2006JD007150
Jokipii, J. R. (1966). Cosmic-Ray Propagation. I. Charged Particles in a Random Magnetic Field. The Astrophysical Journal, 146, 480. https://doi.org/10.1086/148912
O’Brien, K., Friedberg, W., Sauer, H. H., & Smart, D. F. (1996). Atmospheric cosmic rays and solar energetic particles at aircraft altitudes. Environment International, 22, 9–44. https://doi.org/10.1016/S0160-4120(96)00086-4
Velinov, P. I. Y., Asenovski, S., Kudela, K., Lastovicka, J., Mateev, L., Mishev, A., & Tonev, P. (2013). Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere. Journal of Space Weather and Space Climate, 3, A14. https://doi.org/10.1051/swsc/2013036
Hubert, G., & Aubry, S. (2021). Simulation of atmospheric cosmic-rays and their impacts based on pre-calculated databases, physical models and computational methods. Journal of Computational Science, 51, 101307. https://doi.org/10.1016/j.jocs.2021.101307
Lochard, J., Bartlett, D. T., Rühm, W., Yasuda, H., & Bottolier-Depois, J.-F. (with International Commission on Radiological Protection). (2016). Radiological protection from cosmic radiation in aviation. Sage.
Maurchev, E. A., Shlyk, N. S., Dmitriev, A. V., Abunina, M. A., Didenko, K. A., Abunin, A. A., & Belov, A. V. (2024). Comparison of Atmospheric Ionization for Solar Proton Events of the Last Three Solar Cycles. Atmosphere, 15(2), Article 2. https://doi.org/10.3390/atmos15020151
Enyinna, P. (2016). Radiological risk assessment of cosmic radiation at aviation altitudes (a trip from Houston Intercontinental Airport to Lagos International Airport). Journal of Medical Physics, 41(3), 205. https://doi.org/10.4103/0971-6203.189491
Sato, T. (2015). Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS. PLOS ONE, 10(12), e0144679. https://doi.org/10.1371/journal.pone.0144679
Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. (2002). NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research: Space Physics, 107(A12), SIA 15-1-SIA 15-16. https://doi.org/10.1029/2002JA009430
Matthiä, D., Berger, T., Mrigakshi, A. I., & Reitz, G. (2013). A ready-to-use galactic cosmic ray model. Advances in Space Research, 51, 329–338. https://doi.org/10.1016/j.asr.2012.09.022
Sato, T., & Niita, K. (2006). Analytical Functions to Predict Cosmic-Ray Neutron Spectra in the Atmosphere. Radiation Research, 166(3), 544–555. https://doi.org/10.1667/RR0610.1
Sedrati, R., & Bouchachi, D. (2022). Calculation of the atmospheric cosmic ray flux and dosimetry with EXPACS code. Journal of the Korean Physical Society, 80(9), 940–947. https://doi.org/10.1007/s40042-022-00485-z
Cucinotta, F. A., & Durante, M. (2006). Cancer risk from exposure to galactic cosmic rays: Implications for space exploration by human beings. The Lancet Oncology, 7(5), 431–435. https://doi.org/10.1016/S1470-2045(06)70695-7
Dietze, G., Bartlett, D. T., Cool, D. A., Cucinotta, F. A., Jia, X., McAulay, I. R., Pelliccioni, M., Petrov, V., Reitz, G., & Sato, T. (2013). ICRP Publication 123: Assessment of Radiation Exposure of Astronauts in Space. Annals of the ICRP, 42(4), 1–339. https://doi.org/10.1016/j.icrp.2013.05.004

التنزيلات
منشور
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2025 Proceedings of the Faculty of Science Conferences

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.