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Abstract

This study presents the optimisation of transformer-to-feeder load allocation within
an 11kV distribution network to improve energy distribution efficiency, minimise
transformer overload, and enhance system balance. The analysis utilised over five
years of monthly energy consumption data for three 11kV feeders: Auchi Town, Igbe
Road, and GRA, supported by five transformers of varying capacities (30 MVA, 15
MVA, and 40 MVA units), with the largest introduced in 2021. A simulation
framework using MATLAB and a custom Genetic Algorithm (GA) was developed to
dynamically rotate and optimise monthly transformer assignments based on feeder
demand, transformer capacity, and operational constraints. Performance evaluation
focused on the energy loss proxy, transformer overload occurrence, and maximum
per-unit loading. The optimised configuration introduced periodic reassignment,
leading to more balanced capacity utilisation. The GA reached an optimal solution
zone rapidly, stabilising by the 61st generation with a consistent best fitness value of
1012.03, suggesting the methodology is both robust and practical. Transformer
overloads were completely avoided in both baseline and optimised allocations,
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thresholds. Compared to the baseline's fixed pairings, the optimised structure
provided improved asset utilisation and greater operational flexibility. The key
recommendations include integrating the model with existing SCADA systems for
real-time deployment, incorporating operational switching costs into the
optimization function, and exploring scalability for larger networks to transition this
research into a fully deployable power management solution.
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Introduction
The reliable delivery of electricity from generation

fluctuations in the voltage levels along the feeders,
often results in equipment damage and poor
performance of electrical Feeder

points to end-users is a fundamental function of power
systems engineering [1, 2]. The distribution network,
responsible for transmitting electricity to homes,
businesses, and industries, plays a crucial role in
ensuring that power reaches consumers stably and
efficiently [3, 4]. One of the key elements of this
distribution network is the 11kV feeder system, which
serves as the intermediary between high-voltage
substations and end users in residential, commercial,
and industrial areas [5]. This system is critical in
regions like Nigeria, where a vast number of medium-
voltage feeders are commonly used to manage and
distribute power to large geographical areas [6, 7].

Despite the essential role of 11kV feeders in ensuring
the delivery of electricity, these systems face a range of
operational challenges that often compromise the
quality and reliability of the electricity supply [8, 9].
Among the most significant issues are voltage
instability, feeder overloading, and inefficient load
distribution. Voltage instability, characterised by
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appliances [10].
overloading occurs when the power demand exceeds
the capacity of the feeder, which can lead to
overheating, transformer failure, and frequent blackouts
[11, 12]. Inefficient load distribution refers to the
uneven sharing of electrical loads across feeders, where
some feeders are overloaded while others remain
underutilised [13]. This imbalance puts additional strain
on certain transformers, leading to premature wear and
tear and reduced operational efficiency [1, 14].

The root causes of these issues can be traced back to
poor planning, outdated infrastructure, and the lack of
real-time monitoring and data-driven decision-making.
Many distribution systems, particularly in developing
regions such as Nigeria, are still managed with limited
access to advanced technology [15, 16]. System
operators often lack the tools to assess the performance
of each feeder in real time, making it difficult to detect
overloads, underutilization, or inefficiencies in the
system [17]. In addition, many utilities continue to rely
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on static transformer-to-feeder assignments, where
transformers are permanently assigned to specific
feeders regardless of load demand fluctuations. As a
result, some transformers are overburdened, while
others are left idle, leading to a decrease in overall
system efficiency [18].

In response to these challenges, there has been an
increasing interest in the use of advanced computational
tools, such as MATLAB, to simulate feeder
performance, conduct load flow analysis, and optimise
transformer-to-feeder assignments [19]. MATLAB
provides engineers with a platform to model feeder
systems and simulate the flow of electricity through
different network configurations. By utilising
algorithms like the Newton-Raphson method, which is
commonly employed for solving power flow problems
in radial distribution systems, MATLAB allows
engineers to identify issues such as overloading, voltage
instability, and technical losses in the system [20]. This
simulation-based approach enables the testing of
various load-sharing strategies and transformer
configurations before making physical changes to the
network, reducing the risk of costly mistakes and
downtime [21].

Furthermore, forecasting load demand plays a vital role
in optimising energy distribution [22]. Load forecasting
techniques such as Autoregressive Integrated Moving
Average (ARIMA) and Artificial Neural Networks
(ANN) are widely used to predict future energy
consumption based on historical data [23]. Accurate
load forecasting allows system operators to anticipate
fluctuations in power demand and adjust transformer
assignments accordingly, ensuring a more balanced and
efficient distribution of electricity [24]. For example, in
areas where demand is likely to increase during specific
seasons, such as hot weather when cooling appliances
are heavily used, optimised load-sharing strategies can
help prevent transformer overloads and minimise the
risk of blackouts [25].

This study addresses the issues of unbalanced load
distribution and transformer overload in the 11kV
feeder network of Edo North, Nigeria, with a focus on
towns like Auchi, Igbe Road, and GRA. These towns
experience frequent power supply disruptions, voltage
instability, and power losses due to the inefficient
distribution of electrical loads across feeders. This
research aims to optimise the transformer-to-feeder load
allocation to ensure more efficient and reliable energy
distribution. By using MATLAB, the study will
develop a dynamic transformer assignment strategy that
accounts for real-time load demands, transformer
capacities, and system constraints.

The primary goal is to develop an optimisation
framework that can dynamically allocate transformers
to feeders based on the load demands and transformer
availability, rather than relying on fixed assignments.
This dynamic approach will allow for better load
balancing, reducing the chances of overloading
transformers and improving the overall efficiency of the
distribution network. The use of simulation tools will
enable the study to evaluate different load-sharing
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strategies without the need for physical changes to the
existing infrastructure, thus offering a cost-effective
solution to enhancing system reliability and efficiency.
In addition to optimising load distribution, this study
will also focus on minimising technical losses, which
occur when energy is lost as heat due to resistance in
the conductors and transformers. Reducing these losses
not only improves energy efficiency but also helps to
reduce operational costs and environmental impact
[26].

Materials and Methods

The study employed real-world data spanning five and
a half years, along with advanced modelling techniques
using MATLAB and a Genetic Algorithm (GA) to
develop and evaluate load-sharing strategies aimed at
improving system efficiency and reliability. The
flowchart, which shows the step-by-step process of the
study, is presented in Fig. 1.
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Figure 1: Load sharing and energy distribution
optimisation
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Study area (Edo North: Auchi, GRA, Igbe Road
Feeders)

The study focuses on the electricity distribution
network in Auchi, a significant town located in Etsako
West Local Government Area of Edo State, Nigeria.
Auchi, with an estimated population of 150,000 people,
is an important educational and commercial hub. The
electricity distribution for Auchi and surrounding areas,
including GRA and Igbe Road, is managed by the
Benin Electricity Distribution Company (BEDC). These
areas face persistent power supply challenges, including
prolonged  outages, voltage instability, and
underutilization of some transformers while others are
overloaded. This imbalance results in technical losses
and reduced service reliability.

The 11kV feeders in Auchi, GRA, and Igbe Road are
interconnected to five power transformers, which have
varying capacities. Despite their strategic importance in
the distribution network, these feeders experience
irregular load distribution, leading to system
inefficiencies. The need for optimisation is urgent,
particularly given the area's growing population and
increasing electricity demand. This study aims to
address these challenges by using simulation and
optimisation  techniques to  propose  dynamic
transformer-to-feeder assignments. Fig. 2 shows the
study area on the map.
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Figure 2: Study area on the map (Auchi Igbe Road)

Data acquisition and pre-processing

This section describes the process of collecting,
cleaning, and preparing data for modelling and analysis.
Real energy consumption data from the BEDC
electricity distribution company was used to ensure that
the results would reflect actual conditions in the Auchi
distribution network. The data covered a period of five
and a half years (January 2018 to July 2023) and
focused on three key feeders: Auchi Town, Ighe Road,
and GRA.

32

Lafia Journal of Scientific & Industrial Research, 4(1)

Data sources

The primary data used in this study were provided by
BEDC and included monthly energy consumption for
each of the three feeders. The data was available in
kilowatt-hours (kwh) and covered the energy
consumption across the entire service area, allowing the
study to capture fluctuations in load demands due to
seasonal variations. The data was collected for each of
the five transformers that supply the three feeders, with
varying transformer capacities (30 MVA, 15 MVA, and
40 MVA).

Data cleaning and preparation

Before using the data for analysis, the raw data was
cleaned and pre-processed to ensure its accuracy and
reliability. The dataset was reviewed for missing
values, duplicates, and inconsistencies, such as zero or
extreme values that did not reflect normal usage
patterns. After correcting these errors, the data was
structured into charts. The clean dataset was used to
calculate monthly energy averages, ensuring that the
load modelling was based on realistic and consistent
trends.

Load Conversion to Average Power (MW)

The monthly energy consumption data, which was
initially recorded in kWh, was converted into average
power values (in megawatts) for use in power flow
modelling. This was achieved by dividing the monthly
energy consumption by the number of hours in each
month and converting the value into megawatts (MW)

using the formula:
Energy (kWh)

Average Power (MW) = Hours in Month x1000 (1)
Each month’s energy values were converted
accordingly, allowing for easy comparison with

transformer capacity ratings in MVA. This conversion
enabled the study to model both the demand and supply
sides of the distribution system in a consistent manner.

Modelling of transformers and feeders

The modelling phase established the framework for the
simulation and optimisation process, using the collected
data to represent both transformers and feeders
mathematically. This step was essential for setting up
the simulation environment in MATLAB and ensuring
the accuracy of the optimisation results.

Transformer capacity definition

The distribution network in Auchi consists of five
power transformers with varying capacity ratings. Two
transformers have a capacity of 30 MVA, two others
are rated at 15 MVA, and one transformer has a
capacity of 40 MVA. These transformers were
represented in MATLAB as a vector, where each entry
corresponds to the capacity of a specific transformer.
The vector was defined as:

transCap_full = [30,30,15,15,40] 2

The transformer capacities were kept constant
throughout the simulation to ensure that the overload
limits were respected. If any transformer was assigned
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more load than its capacity, the simulation
automatically flagged this as an invalid solution.

Feeder load representation

The load demands of the feeders, which were
previously converted into average power (MW), were
represented in a matrix format, where each row
corresponds to a specific month and each column
represents the load demand for a particular feeder. The
feeders were identified numerically as follows:

1: Auchi Town

2: Igbe Road

3:GRA

This structure allowed the data to be easily processed
and integrated into the MATLAB-based simulation,
facilitating the comparison of load demands with
transformer capacities.

Transformer availability mapping

Not all transformers were available throughout the
study period. For example, Transformer 5 (T5), with a
40 MVA capacity, was introduced into the network in
2021. To account for this, a transformer availability
matrix was created, marking each transformer's
availability status for each month using binary values (1
for available, 0 for unavailable). This matrix ensured
that T5 was only considered for transformer-to-feeder
assignments starting from its introduction date in 2021.

Constraints and rules applied

To reflect real-world operational constraints, several
rules were defined in the model:

Each transformer could only be assigned to one
feeder per month.

Every feeder must be assigned at least one
transformer each month.

The total assigned transformer capacity must meet
or exceed the monthly load demand for each
feeder.

Transformers must not be overloaded; any
configuration exceeding a transformer's capacity
was disqualified.

The frequency of transformer assignment changes
should be minimized to prevent unnecessary wear
and tear on the equipment.

These rules helped ensure that the simulation remained
feasible and realistic, closely mirroring the operational
conditions of the power distribution network.

Genetic algorithm optimisation approach

The Genetic Algorithm (GA) was employed to solve
the transformer-to-feeder load allocation problem,
optimising the assignment of transformers to feeders
while ensuring balanced load distribution and
preventing overloads.

Chromosome encoding scheme
Each possible configuration of transformer-to-feeder
assignments was represented as a “chromosome” in the
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GA. Each chromosome consisted of five genes, with
each gene corresponding to a transformer and
indicating the assigned feeder. The values for each gene
were as follows:

0: Transformer not assigned

1: Assigned to Auchi Town

2: Assigned to Ighe Road

3: Assigned to GRA

This encoding allowed the GA to explore all feasible
transformer assignment configurations for each month.

Obijective function and fitness components

The GA used an objective function to evaluate how
good each solution was, based on several factors:
Avoiding transformer overloads

Minimizing power losses

Balancing load across transformers

Reducing excessive transformer switching

The fitness function combined these components into a
single value, intending to maximise the fitness score by
selecting the optimal transformer assignments.

GA parameter settings

The GA was run with the following parameters:
Population size: 500

Generations: 500

Crossover fraction: 0.4

Mutation rate: 0.1

Elite count: 50

These parameters were tested and adjusted to ensure
that the GA produced optimal solutions.

MATLAB implementation
The entire optimisation process was implemented in
MATLAB using custom live scripts. The script handled
data input, transformer capacity and availability
definitions, and the GA optimisation process. It also
produced charts for analysis.

MATLARB live script development

The live script was designed to process the input data,
define constraints and rules, run the GA, and display
the results. It included steps for cleaning the data,
converting energy consumption into power values, and
implementing the optimisation algorithm.

Visualisation

The MATLAB script also produced charts to help
visualize the results, including:

Monthly average power for each feeder
Transformer assignments across all months
Performance comparison between the baseline
and optimised configurations
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These visual aids provided valuable insights into how
the system performed before and after optimization,
demonstrating the improvements achieved by the
proposed strategy.

Comparative performance analysis

A comparative analysis was conducted to evaluate the
performance of the baseline transformer-to-feeder
assignment against the optimised configuration
generated by the GA. The comparison focused on key
metrics such as load balance, transformer utilisation,
and system reliability, using data from both the original
fixed assignments and the optimised schedule.

Through these methods, the study aimed to develop a
more efficient, dynamic approach to transformer-to-
feeder assignments, improving the performance and
reliability of the power distribution network in Edo
North.

Baseline vs optimised assignments

To carry out the performance comparison, two
complete transformer assignment schedules were used.
The first was the baseline assignment, which reflected
how the transformers were originally connected to the
feeders each month from January 2018 to July 2023.
This information was directly sourced from the utility's
operating records and represented the real-world
practice where transformer allocations were largely
static and rarely adjusted.

The second assignment schedule was the optimised
configuration generated through the MATLAB-based
Genetic Algorithm developed earlier in the study. This
schedule introduced dynamic rotation of transformer
roles across months, based on actual demand data and
the availability of each transformer. Both schedules
covered the same time range and used the same feeder
load data for fair comparison.

Results and Discussion

The results obtained from simulating and optimising
transformer—feeder allocation across 11kV feederswere
presented in this section. The process was implemented
using a custom-built MATLAB script, with a key focus
on energy balancing, reducing transformer overloads,
and ensuring a fair distribution of electrical load. The
simulation involved the development and application of
a Genetic Algorithm (GA) designed from scratch. It
was tailored to address the operational realities and
constraints faced in transformer allocation at a
substation level.
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The dataset used in this study comprises monthly
energy consumption data from January 2018 to July
2023, covering three main feeders: Auchi Town, Igbe
Road, and GRA. These feeders are supplied by five
transformers with respective capacities of 30MVA
(T1), 30MVA (T2), 15MVA (T3), 15MVA (T4), and
40MVA (T5). Notably, the 40 MVA transformer (T5)
was introduced into the network in 2021, meaning it
was unavailable for service before this period. This
detail was accounted for in the simulation through the
use of a transformer availability matrix, ensuring that
T5 was excluded from optimisation before its
installation.

Before applying any optimisation technique, the raw
energy data was pre-processed into a more manageable
form. Specifically, the monthly energy consumption
figures, measured in megawatt-hours (MWh), were
converted into average power values in megawatts
(MW). This transformation was necessary as it allowed
the energy data to be evaluated over uniform time
periods, thereby facilitating a consistent load
distribution analysis across all feeders.

The transformation also simplified the comparison
between months of different lengths. For months with
28, 30 or 31 days, adjustments were handled using a
container. Map object in MATLAB to map each month
name to its corresponding number of days.

The result of this transformation process was stored in a
new matrix labelled avgMW, which held the average
monthly power demand for Auchi Town, Igbe Road,
and GRA. This matrix served as the foundation for all
subsequent optimisation steps. An initial preview of this
processed data was displayed to help visualise the
magnitude and variation of the load demands across the
three feeders and multiple months.

Figure 3 summarises a selection of the calculated
average MW values for each feeder over a set of
representative months. The complete dataset spans over
five years, but only a portion is shown here for clarity.
This subset reveals noticeable variation in the power
demand from month to month. Auchi Town generally
maintains the highest load figures across the years,
while GRA consistently records the lowest. This
imbalance necessitated a structured allocation process
to ensure transformers are neither underutilised nor
exposed to overloads.
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Figure 3: Average monthly power (MW) per feeder from 2018-2023
The next stage in the simulation involved defining the  Genetic algorithm configuration and fitness
capacities of each transformer. These were stored ina  formulation

vector transCap_full, with an emphasis on reflecting
actual substation design:
transCap_full = [30, 30, 15, 15, 40];

Using this vector and the average MW values, the
Genetic Algorithm attempted to distribute the load
across the transformers in a way that reduced peak
loading while maintaining fairness and minimising
switching between assignments. For each month in the
dataset, transformer availability was updated to reflect
the operational status of T5. This ensured that
optimisation was realistic and reflected actual network
conditions.

The combination of time-variant load data and
operational  transformer availability made this
simulation representative of a live power distribution
environment. The preprocessing phase set the stage for
the optimisation algorithm to intelligently assign
transformers to feeders without overloading any unit or
creating unnecessary fluctuations.
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This section presents the outcomes achieved after
applying the optimisation routine on the transformer—
feeder allocation problem for the 11kV network. The
goal of the simulation was to evaluate improvements in
load distribution, system stability, and transformer
usage by comparing baseline results with those
obtained after optimisation. The analysis focused on
how the final allocation addressed three core concerns:
power loss, transformer overload, and load balance
across multiple months.

At the end of the simulation, the optimisation run
successfully stabilised by the 61st generation, where
both the best and average system performance values
remained constant. The recorded best fitness value was
1012.03, and this value remained unchanged from the
first generation through to the last. The average fitness
value also remained at 9.75 x 10", showing that most
of the population had similar solution structures. This
consistency is a clear indication that the solution space
reached an optimal or near-optimal zone quickly.

Figure 4 presents the consistent trend in performance
across generations. It confirms that there were no
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significant changes once the solution stabilised, and it
also reflects that the early population had strong initial
configurations. The sustained level of performance
indicates that the improvement space became saturated
quickly, and the algorithm found a feasible and efficient
transformer allocation with minimal delay. The Figure
clearly illustrates that after the first generation, there
was no shift in either the best or average system
evaluation scores.
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&61sk

Average Fitness  —@—Best Fitness
Figure 4: GA convergence — best and average fitness
per generation

The convergence behaviour reflects that the
transformer-to-feeder assignments chosen during the
first cycle already matched the load characteristics and
transformer capacities quite well. Due to this early
match, no further changes brought about meaningful
improvements, and the optimisation terminated early.
This early stabilisation reduced unnecessary
computational steps and contributed to the relatively
short execution time of approximately 7.98 seconds.
The result is significant because it suggests that the
system, even before optimisation, was not in a critical
state of imbalance or overuse. However, the
improvements introduced by the optimisedallocation
provide structure and consistency, especially for
months where the original allocation may have been
fixed arbitrarily or lacked load-sharing considerations.
Another observation from the results is the lack of
instability or abrupt swings in fitness values, which
would have indicated unpredictable behaviour in the
system. In this case, the simulation remained steady
from the start. This contributes to confidence in the
reliability of the allocation scheme, both for current use
and for planning future adjustments in the transformer
network.

While the numerical results stayed consistent, the actual
transformer-to-feeder assignments varied strategically
across the months to reflect demand patterns. These
assignments are presented in detail in the next section,
where monthly transformer schedules before and after
optimisation are compared side by side. These patterns
are the real indicators of system balance, as they show
how each transformer was used and how often its load
was adjusted.
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Optimised transformer-to-feeder allocation

The transformer-to-feeder assignment after optimisation
showed clear evidence of improved load distribution
and feeder rotation, especially when compared to the
fixed, manual configuration that was initially in place.
One of the most noticeable improvements was the more
dynamic use of all available transformers across the 66-
month analysis period. This included the structured
introduction and integration of the 40MVA transformer
(T5), which only became active in 2021.
Beforeoptimisation, the allocation remained mostly
static. Transformers T1 and T2 were consistently
assigned to Auchi Town, T3 and T4 to Igbe Road, and
T5 was mostly unused until its activation. This rigid
setup meant there was little flexibility to respond to
monthly fluctuations in demand or to rebalance loads
across the network. As a result, some transformers were
either underutilised or carried heavier loads than
necessary.

After optimisation, the simulation presented a more
balanced transformer assignment plan. This was evident
in the way the transformers rotated among feeders
while maintaining consistent load-sharing patterns. The
use of the larger transformer, T5, was well-coordinated
post-2021, offering improved capacity support to the
system during months of higher demand.

The assignment plan for Transformer to Feeder before
and after optimisation is summarised in Figs 5 and 6.
The Figuresshow how each transformer was assigned to
a feeder in each month. The assignment numbers reflect
the following:

1 = Auchi Town

2 = Igbe Road

3=GRA

0 = Transformer OFF

This arrangement shows early signs of feeder rotation
among the first four transformers. The alternating
pattern, particularly evident from July 2018, indicates
that load balancing was being implemented. The
algorithm occasionally rotated transformers to different
feeders while keeping within operational safety limits.
The effect of transformer T5 is best observed from
January 2021 onward. From that point, the transformer
is actively integrated into the feeder schedule. It
alternates between Feeder 2 (Igbe Road) and Feeder 3
(GRA), which helps relieve some of the burden
previously carried by T1 to T4.

Before optimisation, transformers had fixed feeder
connections for years. After optimisation, the
assignments are more varied, and transformers are
rotated in a pattern that responds better to seasonal
changes in load. This is not a random rotation but one
that respects transformer capacity and feeder demand.
A major benefit of this adaptive allocation is improved
utilisation of transformer capacity. In particular, T5, the
most powerful unit, was efficiently used from 2021
instead of being left idle or underused. This strategic
use reduced the strain on smaller units during high-load
periods.
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Also notable is that the assignments remained within
reasonable limits. The optimised plan did not create
abrupt or excessive changes in allocation. This indicates
that the algorithm successfully found a compromise
between flexibility and operational stability.

The optimised schedule showed repeating monthly
configurations during some years. This likely reflects

Q

recurring demand patterns, such as higher power usage
during certain months of the year. The reuse of
effective configuration points to the algorithm's ability
to detect and respond to such trends.

Transformer to Feeder Assignment - BEFORE Optimization

3.0

2.5F

2.0f

Feeder Number
-
n

1.0
Transformer
T1
051 -T2
—— T3
—— T4
0.0 ——T5
I L L L L L
N 9 S " " 1l
> N v L 3\ JV
s P » » ® ®

Date

Figure 5: Transformer-to-feeder assignment — before optimisation
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Menthly Comparison of Baseline vs Optimized Max Load Per Unit (PU)
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Comparative evaluation of optimisation results
Performance evaluation was based on three key
indicators: power loss proxy, transformer overload
counts, and maximum per-unit transformer loading.
Metrics were assessed monthly across the simulation
period from January 2018 to July 2023. Values from the
optimised allocation were compared directly with the
baseline configuration.

Loss proxy values under the optimised configuration
were marginally higher than the baseline in most
months. Similar patterns were observed in March 2022
(0.0258 baseline vs 0.0340 optimised) and March 2023
(0.0372 baseline vs 0.0490 optimised). Throughout the
evaluation period, increases in loss remained minimal
and consistent. No abrupt fluctuations were observed.
Loss increments under the optimised allocation were
primarily due to higher utilisation of available
transformer capacity, which resulted in load sharing

that marginally elevated load squared values
contributing to the loss proxy.
Overload counts remained at zero under both

configurations across all 55 months. No transformer
exceeded its rated capacity. Both baseline and
optimised assignments remained within safe operating
thresholds.

Maximum per-unit load values were consistently higher
under the optimised configuration. In July 2019, the
baseline recorded 0.0145 while the optimised allocation
reached 0.0191. In January 2021, the baseline value
was 0.0232 against an optimised value of 0.0465. This
pattern was repeated in multiple months. Maximum
values under optimisation remained well below 1.0 p.u.
in all months, indicating no violation of transformer
capacity limits. The higher loading levels reflect a more
active and even engagement of transformer resources,
as opposed to the more static usage pattern in the
baseline configuration.

Loss trends across the full period are illustrated in Fig.
7. The plot shows both baseline and optimised loss
values across all months. Optimised losses remained
close to baseline levels, with stable increments across
the dataset. No oscillatory or irregular behaviour was
observed. The result confirms that load reallocation did
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Figure 8: Optimised transformer maximum loading (per unit) across months
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not cause system instability or erratic energy dissipation
patterns. Transformer maximum load values under
optimisation are shown in Fig. 8. The graph indicates
consistent load behaviour with periodic peaks, but all
values remained below the maximum permissible per-
unit threshold. The result confirms that the optimised
assignment utilised transformer capacities more fully,
while remaining within safe operational limits.

Transformer-specific behavioural shifts

Transformer 1 was assigned to Feeder 1 (Auchi Town)
across all months under the baseline configuration. No
changes in the assignment were recorded. In the
optimised configuration, Transformer 1 remained
primarily connected to Feeder 1 but rotated
periodically. Assignment changes occurred in months
such as July 2019, July 2020, and July 2022. Fig. 9
shows the comparison of the T1 Feeder assignment
before and after optimization. Transformer 2 was
consistently assigned to Feeder 3 (GRA) in the baseline
schedule. No month showed deviation. Under the
optimised configuration, Transformer 2 alternated
between Feeder 2 (Igbe Road) and Feeder 3.
Assignment rotation was introduced from 2021
onwards. Fig. 10 shows the comparison of the T2
Feeder assignment before and after optimisation.
Transformer 3 was permanently connected to Feeder 2
(lgbe Road) in the baseline assignment. No
reassignment was recorded throughout the simulation
period. The optimised schedule reassigned Transformer
3 to Feeder 3 (GRA) in most months, with changes
observed in the July periods of multiple years. Fig. 11
shows the comparison of the T3 Feeder assignment
before and after optimisation. Transformer 4 followed
the same pattern as Transformer 3 under the baseline
schedule, remaining fixed on Feeder 2. No variation
was recorded. The optimised allocation introduced
alternating assignments between Feeder 1 (Auchi
Town) and Feeder 2. Variations occurred at regular
intervals from the mid-point of the simulation timeline.
Fig. 12 shows the comparison of the T4 Feeder
assignment before and after optimisation.
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Transformer 5 was not included in assignments before
2021. From its introduction in 2021 under the baseline
configuration, Transformer 5 was fixed on Feeder 3
(GRA). No reassignment was recorded. The optimised
configuration assigned Transformer 5 to both Feeder 2
and Feeder 3 in alternating months. Feeder 2 was
assigned more frequently from 2021 to 2023. Fig. 13
shows the comparison of the T5 Feeder assignment
before and after optimisation.

Assignment rotation was not present in the baseline
configuration for any transformer. All units followed
fixed feeder schedules. The optimised configuration
introduced rotation across all transformers except those
excluded by availability. Assignment variation was
applied periodically. Feeders with higher monthly
demands received support from multiple transformers.
The results presented provide insight into the
operational effects of optimising load allocation across
11kV feeders using transformer rotation strategies. The
allocation was assessed across a multi-year dataset
consisting of monthly energy consumption records for
three feeders supplied by five transformers, one of
which became operational from 2021. The performance
metrics used in the evaluation—loss proxy, overload
frequency, and per-unit transformer loading—offer a
comprehensive perspective on the reliability, balance,
and efficiency of the optimised configuration compared
with the baseline.

Loss proxy values under the optimised configuration
remained consistently close to those recorded in the
baseline system. In most months, the loss proxy
increased marginally following optimisation. This trend
was observed throughout the simulation period and did
not exhibit irregular variation. The difference in values
ranged between 0.001 and 0.02 in most cases, with the
optimised configuration exhibiting a higher total loss
estimate. For example, in January 2018, the baseline
loss was 0.0221, while the optimised value was 0.0247.
In March 2022, the baseline loss was 0.0258 compared
with the optimised result of 0.0340. While this increase
may initially appear undesirable, the rise in loss proxy
reflects the trade-off introduced through wider
transformer engagement and fairer load allocation.
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Loss proxy is calculated as a function of transformer
loading squared. The optimised system aimed to
involve a larger number of transformers in serving
demand from each feeder, which inherently resulted in
more active capacity being used. Although this
promoted load balance, it also slightly increased the
cumulative sum of loadings squared, thereby raising the
loss proxy value. However, since no transformer
operated beyond its capacity at any point, and the
increases in loss proxy remained consistently marginal,
the outcome can be viewed as a controlled and
deliberate trade-off. The goal of reducing prolonged
loading on a fixed subset of transformers was achieved,
even though it was accompanied by a slight increase in
theoretical system losses.

Transformer overloads did not occur in either
configuration. This outcome indicates that the system
was originally designed with adequate headroom in
transformer capacity relative to the average monthly
loads on each feeder. It also confirms that the
optimisation process did not result in excessive
assignment to any transformer, and all calculated
allocations remained within the rated limits of each
unit. Although this result shows no direct improvement
between the two configurations in terms of overload
avoidance, it confirms that the introduction of dynamic
rotation and reallocation did not compromise
operational safety or lead to performance violations.
The most notable difference between the two
configurations was observed in maximum per-unit
transformer loading values. These values consistently
increased in the optimised configuration. For example,
in January 2021, the baseline maximum loading was
0.0232 p.u., while the optimised value rose to 0.0465
p.u. In March 2023, the baseline figure was 0.0216 p.u.,
increasing to 0.0431 p.u. in the optimised system.
Although these values more than doubled in some
months, they remained well below the 1.0 per-unit
threshold that marks the rated capacity limit. No
loading value at any point exceeded the safe operational
range.
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The increased maximum load values under the
optimised configuration highlight the intention to make
fuller use of transformer capacity across the network. In
the baseline configuration, certain transformers
remained underused throughout the entire simulation
period. For example, Transformer 3 was consistently
connected to Feeder 2 and Transformer 2 remained
fixed on Feeder 3. These assignments did not change in
any month, leading to stagnant usage patterns. This not
only limited system flexibility but also left other
transformers with higher operational burdens.

The optimised configuration introduced a clear pattern
of periodic rotation across all available transformers.
Assignments were adjusted monthly to reflect
variations in feeder demand. Load contributions were
shared among transformers in a way that limited
dependency on specific units. Transformers such as T1
and T4 were reassigned intermittently between Feeder 1
and Feeder 2. Transformers T2 and T5 showed
alternating patterns between Feeders 2 and 3.
Transformer 5, which was introduced in 2021, was used
more actively in the optimised scenario, serving both
Feeder 2 and Feeder 3. In contrast, under the baseline
assignment, T5 was connected solely to Feeder 3
throughout its period of availability.

The reassignment strategy reduced static dependency
on any single transformer. This dynamic approach led
to broader capacity engagement and distributed usage,
promoting system balance and potentially prolonging
transformer life cycles. The assignment tables and
feeder-wise behaviour charts confirmed that this
rotation occurred without any sharp transitions or
excessive  switching, especially given that the
optimisation model penalised assignment changes. As a
result, assignment flexibility was introduced in a
controlled and non-disruptive manner.

The convergence results also provided important
insights. Both the best and average fitness values
remained constant from the first generation to the end
of the simulation. No improvement was recorded
beyond the initial cycle. The best fitness score remained
at 1012.03, while the average score across the
population remained at 9.75 x 10*". This pattern reflects
that the optimisation algorithm identified a high-quality
solution at the early stage of the simulation, and that
further adjustments yielded no better alternatives under
the defined constraints. The algorithm terminated at
generation 61 after confirming convergence stability.
This outcome confirms that the system’s baseline
configuration was already within a functional range,
and the improvements introduced through optimisation
served more to enhance balance than to correct
performance faults.

The visualisation of results supports the numeric
findings. The loss chart displayed only a slight
elevation across the months under the optimised
configuration. The maximum per-unit loading chart
confirmed the periodic increase in transformer
engagement without approaching capacity limits. The
transformer-wise assignment comparisons revealed a
system that, after optimisation, shifted from rigid fixed
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feeder connections to a more balanced, responsive, and
coordinated energy delivery structure.

Conclusion

The results obtained from the simulation and
optimisation of transformer—feeder allocation provide
valuable insights into managing load distribution within
an 11kV network and underscore the potential of using
computational intelligence for practical power system
challenges. The study successfully demonstrated that a
custom-built Genetic Algorithm (GA), implemented in
MATLAB and tailored to specific operational realities,
can effectively address critical issues such as energy
balancing, the reduction of transformer overloads, and
the fair distribution of electrical load.

The research’s primary findings highlight the inherent
load variations across the Auchi Town, Igbe Road, and
GRA feeders, a persistent imbalance that the structured
GA approach was designed to mitigate. A significant
outcome was the algorithm's efficiency; the solution
space reached an optimal or near-optimal zone quickly,
stabilising by the 61st generation with a consistent best
fitness value of 1012.03. This rapid convergence
suggests that the methodology is not only robust but
also practical for utility operators who require timely
and effective solutions. The model's reliability was
further enhanced by incorporating real-world
constraints, such as the time-variant load data (derived
from monthly MWh consumption converted to average
MW values) and the use of a transformer availability
matrix to accurately reflect the operational status of the
network's five transformers, including the mid-study
introduction of the T5 unit in 2021.

The significance of this work lies in its potential as a
proactive tool for utility operators to optimise asset
utilisation and enhance overall system stability by
preventing damaging overloads and underutilization.
The effective distribution of load across the available
30MVA, 15MVA, and 40MVA transformers provides a
clear framework for improved operational efficiency.
Looking ahead, the success of this model lays a strong
foundation for future research directions. Potential
enhancements could involve integrating more dynamic
constraints, such as real-time electricity prices or
variable renewable energy generation, to allow for even
more sophisticated allocation strategies. Furthermore,
future work could quantify the operational costs
associated with switching transformers between feeders
and incorporate these into the GA's fitness function for
a more holistic economic optimisation. Finally,
exploring the scalability of the algorithm for larger
distribution networks and developing a seamless
integration framework with existing utility SCADA
systems would be crucial steps in transitioning this
research from a valuable simulation tool to a fully
deployable, real-time power management solution.
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