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This study presents the optimisation of transformer-to-feeder load allocation within 

an 11kV distribution network to improve energy distribution efficiency, minimise 

transformer overload, and enhance system balance. The analysis utilised over five 

years of monthly energy consumption data for three 11kV feeders: Auchi Town, Igbe 

Road, and GRA, supported by five transformers of varying capacities (30 MVA, 15 

MVA, and 40 MVA units), with the largest introduced in 2021. A simulation 

framework using MATLAB and a custom Genetic Algorithm (GA) was developed to 

dynamically rotate and optimise monthly transformer assignments based on feeder 

demand, transformer capacity, and operational constraints. Performance evaluation 

focused on the energy loss proxy, transformer overload occurrence, and maximum 

per-unit loading. The optimised configuration introduced periodic reassignment, 

leading to more balanced capacity utilisation. The GA reached an optimal solution 

zone rapidly, stabilising by the 61st generation with a consistent best fitness value of 

1012.03, suggesting the methodology is both robust and practical. Transformer 

overloads were completely avoided in both baseline and optimised allocations, 

confirming assignments remained within rated limits. Loss proxy values under the 

optimised configuration increased slightly, reflecting broader transformer 

engagement, while maximum per-unit loading values remained safely below critical 

thresholds. Compared to the baseline's fixed pairings, the optimised structure 

provided improved asset utilisation and greater operational flexibility. The key 

recommendations include integrating the model with existing SCADA systems for 

real-time deployment, incorporating operational switching costs into the 

optimization function, and exploring scalability for larger networks to transition this 

research into a fully deployable power management solution. 

Keywords: 
Transformer load allocation, energy distribution efficiency, 11kV 

distribution network, dynamic transformer assignment, transformer 

overload management, optimization framework 

 

 

Introduction 

The reliable delivery of electricity from generation 

points to end-users is a fundamental function of power 

systems engineering [1, 2]. The distribution network, 

responsible for transmitting electricity to homes, 

businesses, and industries, plays a crucial role in 

ensuring that power reaches consumers stably and 

efficiently [3, 4]. One of the key elements of this 

distribution network is the 11kV feeder system, which 

serves as the intermediary between high-voltage 

substations and end users in residential, commercial, 

and industrial areas [5]. This system is critical in 

regions like Nigeria, where a vast number of medium-

voltage feeders are commonly used to manage and 

distribute power to large geographical areas [6, 7]. 

Despite the essential role of 11kV feeders in ensuring 

the delivery of electricity, these systems face a range of 

operational challenges that often compromise the 

quality and reliability of the electricity supply [8, 9]. 

Among the most significant issues are voltage 

instability, feeder overloading, and inefficient load 

distribution. Voltage instability, characterised by 

fluctuations in the voltage levels along the feeders, 

often results in equipment damage and poor 

performance of electrical appliances [10]. Feeder 

overloading occurs when the power demand exceeds 

the capacity of the feeder, which can lead to 

overheating, transformer failure, and frequent blackouts 

[11, 12]. Inefficient load distribution refers to the 

uneven sharing of electrical loads across feeders, where 

some feeders are overloaded while others remain 

underutilised [13]. This imbalance puts additional strain 

on certain transformers, leading to premature wear and 

tear and reduced operational efficiency [1, 14]. 

The root causes of these issues can be traced back to 

poor planning, outdated infrastructure, and the lack of 

real-time monitoring and data-driven decision-making. 

Many distribution systems, particularly in developing 

regions such as Nigeria, are still managed with limited 

access to advanced technology [15, 16]. System 

operators often lack the tools to assess the performance 

of each feeder in real time, making it difficult to detect 

overloads, underutilization, or inefficiencies in the 

system [17]. In addition, many utilities continue to rely 
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on static transformer-to-feeder assignments, where 

transformers are permanently assigned to specific 

feeders regardless of load demand fluctuations. As a 

result, some transformers are overburdened, while 

others are left idle, leading to a decrease in overall 

system efficiency [18]. 

In response to these challenges, there has been an 

increasing interest in the use of advanced computational 

tools, such as MATLAB, to simulate feeder 

performance, conduct load flow analysis, and optimise 

transformer-to-feeder assignments [19]. MATLAB 

provides engineers with a platform to model feeder 

systems and simulate the flow of electricity through 

different network configurations. By utilising 

algorithms like the Newton-Raphson method, which is 

commonly employed for solving power flow problems 

in radial distribution systems, MATLAB allows 

engineers to identify issues such as overloading, voltage 

instability, and technical losses in the system [20]. This 

simulation-based approach enables the testing of 

various load-sharing strategies and transformer 

configurations before making physical changes to the 

network, reducing the risk of costly mistakes and 

downtime [21]. 

Furthermore, forecasting load demand plays a vital role 

in optimising energy distribution [22]. Load forecasting 

techniques such as Autoregressive Integrated Moving 

Average (ARIMA) and Artificial Neural Networks 

(ANN) are widely used to predict future energy 

consumption based on historical data [23]. Accurate 

load forecasting allows system operators to anticipate 

fluctuations in power demand and adjust transformer 

assignments accordingly, ensuring a more balanced and 

efficient distribution of electricity [24]. For example, in 

areas where demand is likely to increase during specific 

seasons, such as hot weather when cooling appliances 

are heavily used, optimised load-sharing strategies can 

help prevent transformer overloads and minimise the 

risk of blackouts [25]. 

This study addresses the issues of unbalanced load 

distribution and transformer overload in the 11kV 

feeder network of Edo North, Nigeria, with a focus on 

towns like Auchi, Igbe Road, and GRA. These towns 

experience frequent power supply disruptions, voltage 

instability, and power losses due to the inefficient 

distribution of electrical loads across feeders. This 

research aims to optimise the transformer-to-feeder load 

allocation to ensure more efficient and reliable energy 

distribution. By using MATLAB, the study will 

develop a dynamic transformer assignment strategy that 

accounts for real-time load demands, transformer 

capacities, and system constraints. 

The primary goal is to develop an optimisation 

framework that can dynamically allocate transformers 

to feeders based on the load demands and transformer 

availability, rather than relying on fixed assignments. 

This dynamic approach will allow for better load 

balancing, reducing the chances of overloading 

transformers and improving the overall efficiency of the 

distribution network. The use of simulation tools will 

enable the study to evaluate different load-sharing 

strategies without the need for physical changes to the 

existing infrastructure, thus offering a cost-effective 

solution to enhancing system reliability and efficiency. 

In addition to optimising load distribution, this study 

will also focus on minimising technical losses, which 

occur when energy is lost as heat due to resistance in 

the conductors and transformers. Reducing these losses 

not only improves energy efficiency but also helps to 

reduce operational costs and environmental impact 

[26].  

 

Materials and Methods 

The study employed real-world data spanning five and 

a half years, along with advanced modelling techniques 

using MATLAB and a Genetic Algorithm (GA) to 

develop and evaluate load-sharing strategies aimed at 

improving system efficiency and reliability. The 

flowchart, which shows the step-by-step process of the 

study, is presented in Fig. 1. 

 

MODELLING TRANSFORMERS 

AND FEEDERS

DATA ACQUISITION AND PRE-

PROCESSING

START

GENETIC ALGORITHM 

OPTIMISATION APPROACH

END

ASSIGNMENT OF 

TRANSFORMERS TO FEEDERS

Figure 1: Load sharing and energy distribution 

optimisation 
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Study area (Edo North: Auchi, GRA, Igbe Road 

Feeders) 

The study focuses on the electricity distribution 

network in Auchi, a significant town located in Etsako 

West Local Government Area of Edo State, Nigeria. 

Auchi, with an estimated population of 150,000 people, 

is an important educational and commercial hub. The 

electricity distribution for Auchi and surrounding areas, 

including GRA and Igbe Road, is managed by the 

Benin Electricity Distribution Company (BEDC). These 

areas face persistent power supply challenges, including 

prolonged outages, voltage instability, and 

underutilization of some transformers while others are 

overloaded. This imbalance results in technical losses 

and reduced service reliability. 

The 11kV feeders in Auchi, GRA, and Igbe Road are 

interconnected to five power transformers, which have 

varying capacities. Despite their strategic importance in 

the distribution network, these feeders experience 

irregular load distribution, leading to system 

inefficiencies. The need for optimisation is urgent, 

particularly given the area's growing population and 

increasing electricity demand. This study aims to 

address these challenges by using simulation and 

optimisation techniques to propose dynamic 

transformer-to-feeder assignments. Fig. 2 shows the 

study area on the map. 

 

 
Figure 2: Study area on the map (Auchi Igbe Road) 

 

 

Data acquisition and pre-processing 

This section describes the process of collecting, 

cleaning, and preparing data for modelling and analysis. 

Real energy consumption data from the BEDC 

electricity distribution company was used to ensure that 

the results would reflect actual conditions in the Auchi 

distribution network. The data covered a period of five 

and a half years (January 2018 to July 2023) and 

focused on three key feeders: Auchi Town, Igbe Road, 

and GRA. 

 

Data sources 
The primary data used in this study were provided by 

BEDC and included monthly energy consumption for 

each of the three feeders. The data was available in 

kilowatt-hours (kWh) and covered the energy 

consumption across the entire service area, allowing the 

study to capture fluctuations in load demands due to 

seasonal variations. The data was collected for each of 

the five transformers that supply the three feeders, with 

varying transformer capacities (30 MVA, 15 MVA, and 

40 MVA). 
 

Data cleaning and preparation 

Before using the data for analysis, the raw data was 

cleaned and pre-processed to ensure its accuracy and 

reliability. The dataset was reviewed for missing 

values, duplicates, and inconsistencies, such as zero or 

extreme values that did not reflect normal usage 

patterns. After correcting these errors, the data was 

structured into charts. The clean dataset was used to 

calculate monthly energy averages, ensuring that the 

load modelling was based on realistic and consistent 

trends. 
 

Load Conversion to Average Power (MW) 

The monthly energy consumption data, which was 

initially recorded in kWh, was converted into average 

power values (in megawatts) for use in power flow 

modelling. This was achieved by dividing the monthly 

energy consumption by the number of hours in each 

month and converting the value into megawatts (MW) 

using the formula: 

Average Power (MW) =
Energy (kWh)

Hours in Month×1000
 (1) 

 

Each month’s energy values were converted 

accordingly, allowing for easy comparison with 

transformer capacity ratings in MVA. This conversion 

enabled the study to model both the demand and supply 

sides of the distribution system in a consistent manner. 
 

Modelling of transformers and feeders 

The modelling phase established the framework for the 

simulation and optimisation process, using the collected 

data to represent both transformers and feeders 

mathematically. This step was essential for setting up 

the simulation environment in MATLAB and ensuring 

the accuracy of the optimisation results. 
 

Transformer capacity definition 
The distribution network in Auchi consists of five 

power transformers with varying capacity ratings. Two 

transformers have a capacity of 30 MVA, two others 

are rated at 15 MVA, and one transformer has a 

capacity of 40 MVA. These transformers were 

represented in MATLAB as a vector, where each entry 

corresponds to the capacity of a specific transformer. 

The vector was defined as: 

transCap_full = [30,30,15,15,40]       (2) 
 

The transformer capacities were kept constant 

throughout the simulation to ensure that the overload 

limits were respected. If any transformer was assigned 
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more load than its capacity, the simulation 

automatically flagged this as an invalid solution. 

 

Feeder load representation 

The load demands of the feeders, which were 

previously converted into average power (MW), were 

represented in a matrix format, where each row 

corresponds to a specific month and each column 

represents the load demand for a particular feeder. The 

feeders were identified numerically as follows: 

 1: Auchi Town 

 2: Igbe Road 

 3: GRA 

 

This structure allowed the data to be easily processed 

and integrated into the MATLAB-based simulation, 

facilitating the comparison of load demands with 

transformer capacities. 

 

Transformer availability mapping 

Not all transformers were available throughout the 

study period. For example, Transformer 5 (T5), with a 

40 MVA capacity, was introduced into the network in 

2021. To account for this, a transformer availability 

matrix was created, marking each transformer's 

availability status for each month using binary values (1 

for available, 0 for unavailable). This matrix ensured 

that T5 was only considered for transformer-to-feeder 

assignments starting from its introduction date in 2021. 

 

Constraints and rules applied 
To reflect real-world operational constraints, several 

rules were defined in the model: 

 Each transformer could only be assigned to one 

feeder per month. 

 Every feeder must be assigned at least one 

transformer each month. 

 The total assigned transformer capacity must meet 

or exceed the monthly load demand for each 

feeder. 

 Transformers must not be overloaded; any 

configuration exceeding a transformer's capacity 

was disqualified. 

 The frequency of transformer assignment changes 

should be minimized to prevent unnecessary wear 

and tear on the equipment. 

 

These rules helped ensure that the simulation remained 

feasible and realistic, closely mirroring the operational 

conditions of the power distribution network. 

 

Genetic algorithm optimisation approach 

The Genetic Algorithm (GA) was employed to solve 

the transformer-to-feeder load allocation problem, 

optimising the assignment of transformers to feeders 

while ensuring balanced load distribution and 

preventing overloads. 

 

Chromosome encoding scheme 

Each possible configuration of transformer-to-feeder 

assignments was represented as a ―chromosome‖ in the 

GA. Each chromosome consisted of five genes, with 

each gene corresponding to a transformer and 

indicating the assigned feeder. The values for each gene 

were as follows: 

 0: Transformer not assigned 

 1: Assigned to Auchi Town 

 2: Assigned to Igbe Road 

 3: Assigned to GRA 

 

This encoding allowed the GA to explore all feasible 

transformer assignment configurations for each month. 

 

Objective function and fitness components 
The GA used an objective function to evaluate how 

good each solution was, based on several factors: 

 Avoiding transformer overloads 

 Minimizing power losses 

 Balancing load across transformers 

 Reducing excessive transformer switching 

 

The fitness function combined these components into a 

single value, intending to maximise the fitness score by 

selecting the optimal transformer assignments. 

 

GA parameter settings 

The GA was run with the following parameters: 

 Population size: 500 

 Generations: 500 

 Crossover fraction: 0.4 

 Mutation rate: 0.1 

 Elite count: 50 

 

These parameters were tested and adjusted to ensure 

that the GA produced optimal solutions. 

 

MATLAB implementation 
The entire optimisation process was implemented in 

MATLAB using custom live scripts. The script handled 

data input, transformer capacity and availability 

definitions, and the GA optimisation process. It also 

produced charts for analysis. 

 

MATLAB live script development 
The live script was designed to process the input data, 

define constraints and rules, run the GA, and display 

the results. It included steps for cleaning the data, 

converting energy consumption into power values, and 

implementing the optimisation algorithm. 

 

Visualisation 
The MATLAB script also produced charts to help 

visualize the results, including: 

 Monthly average power for each feeder 

 Transformer assignments across all months 

 Performance comparison between the baseline 

and optimised configurations 
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These visual aids provided valuable insights into how 

the system performed before and after optimization, 

demonstrating the improvements achieved by the 

proposed strategy. 

 

Comparative performance analysis 
A comparative analysis was conducted to evaluate the 

performance of the baseline transformer-to-feeder 

assignment against the optimised configuration 

generated by the GA. The comparison focused on key 

metrics such as load balance, transformer utilisation, 

and system reliability, using data from both the original 

fixed assignments and the optimised schedule. 

Through these methods, the study aimed to develop a 

more efficient, dynamic approach to transformer-to-

feeder assignments, improving the performance and 

reliability of the power distribution network in Edo 

North. 

 

Baseline vs optimised assignments 

To carry out the performance comparison, two 

complete transformer assignment schedules were used. 

The first was the baseline assignment, which reflected 

how the transformers were originally connected to the 

feeders each month from January 2018 to July 2023. 

This information was directly sourced from the utility's 

operating records and represented the real-world 

practice where transformer allocations were largely 

static and rarely adjusted. 

The second assignment schedule was the optimised 

configuration generated through the MATLAB-based 

Genetic Algorithm developed earlier in the study. This 

schedule introduced dynamic rotation of transformer 

roles across months, based on actual demand data and 

the availability of each transformer. Both schedules 

covered the same time range and used the same feeder 

load data for fair comparison. 

 

Results and Discussion 

The results obtained from simulating and optimising 

transformer–feeder allocation across 11kV feederswere 

presented in this section. The process was implemented 

using a custom-built MATLAB script, with a key focus 

on energy balancing, reducing transformer overloads, 

and ensuring a fair distribution of electrical load. The 

simulation involved the development and application of 

a Genetic Algorithm (GA) designed from scratch. It 

was tailored to address the operational realities and 

constraints faced in transformer allocation at a 

substation level. 

The dataset used in this study comprises monthly 

energy consumption data from January 2018 to July 

2023, covering three main feeders: Auchi Town, Igbe 

Road, and GRA. These feeders are supplied by five 

transformers with respective capacities of 30MVA 

(T1), 30MVA (T2), 15MVA (T3), 15MVA (T4), and 

40MVA (T5). Notably, the 40 MVA transformer (T5) 

was introduced into the network in 2021, meaning it 

was unavailable for service before this period. This 

detail was accounted for in the simulation through the 

use of a transformer availability matrix, ensuring that 

T5 was excluded from optimisation before its 

installation. 

Before applying any optimisation technique, the raw 

energy data was pre-processed into a more manageable 

form. Specifically, the monthly energy consumption 

figures, measured in megawatt-hours (MWh), were 

converted into average power values in megawatts 

(MW). This transformation was necessary as it allowed 

the energy data to be evaluated over uniform time 

periods, thereby facilitating a consistent load 

distribution analysis across all feeders. 

The transformation also simplified the comparison 

between months of different lengths. For months with 

28, 30 or 31 days, adjustments were handled using a 

container. Map object in MATLAB to map each month 

name to its corresponding number of days. 

The result of this transformation process was stored in a 

new matrix labelled avgMW, which held the average 

monthly power demand for Auchi Town, Igbe Road, 

and GRA. This matrix served as the foundation for all 

subsequent optimisation steps. An initial preview of this 

processed data was displayed to help visualise the 

magnitude and variation of the load demands across the 

three feeders and multiple months. 

Figure 3 summarises a selection of the calculated 

average MW values for each feeder over a set of 

representative months. The complete dataset spans over 

five years, but only a portion is shown here for clarity. 

This subset reveals noticeable variation in the power 

demand from month to month. Auchi Town generally 

maintains the highest load figures across the years, 

while GRA consistently records the lowest. This 

imbalance necessitated a structured allocation process 

to ensure transformers are neither underutilised nor 

exposed to overloads. 
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Figure 3: Average monthly power (MW) per feeder from 2018-2023 

 

 

The next stage in the simulation involved defining the 

capacities of each transformer. These were stored in a 

vector transCap_full, with an emphasis on reflecting 

actual substation design: 

 transCap_full = [30, 30, 15, 15, 40]; 

 

Using this vector and the average MW values, the 

Genetic Algorithm attempted to distribute the load 

across the transformers in a way that reduced peak 

loading while maintaining fairness and minimising 

switching between assignments. For each month in the 

dataset, transformer availability was updated to reflect 

the operational status of T5. This ensured that 

optimisation was realistic and reflected actual network 

conditions. 

The combination of time-variant load data and 

operational transformer availability made this 

simulation representative of a live power distribution 

environment. The preprocessing phase set the stage for 

the optimisation algorithm to intelligently assign 

transformers to feeders without overloading any unit or 

creating unnecessary fluctuations. 

 

Genetic algorithm configuration and fitness 

formulation 

This section presents the outcomes achieved after 

applying the optimisation routine on the transformer–

feeder allocation problem for the 11kV network. The 

goal of the simulation was to evaluate improvements in 

load distribution, system stability, and transformer 

usage by comparing baseline results with those 

obtained after optimisation. The analysis focused on 

how the final allocation addressed three core concerns: 

power loss, transformer overload, and load balance 

across multiple months. 

At the end of the simulation, the optimisation run 

successfully stabilised by the 61st generation, where 

both the best and average system performance values 

remained constant. The recorded best fitness value was 

1012.03, and this value remained unchanged from the 

first generation through to the last. The average fitness 

value also remained at 9.75 × 10
11

, showing that most 

of the population had similar solution structures. This 

consistency is a clear indication that the solution space 

reached an optimal or near-optimal zone quickly. 

Figure 4 presents the consistent trend in performance 

across generations. It confirms that there were no 
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significant changes once the solution stabilised, and it 

also reflects that the early population had strong initial 

configurations. The sustained level of performance 

indicates that the improvement space became saturated 

quickly, and the algorithm found a feasible and efficient 

transformer allocation with minimal delay. The Figure 

clearly illustrates that after the first generation, there 

was no shift in either the best or average system 

evaluation scores. 

 

 
Figure 4: GA convergence – best and average fitness 

per generation 
 

 

The convergence behaviour reflects that the 

transformer-to-feeder assignments chosen during the 

first cycle already matched the load characteristics and 

transformer capacities quite well. Due to this early 

match, no further changes brought about meaningful 

improvements, and the optimisation terminated early. 

This early stabilisation reduced unnecessary 

computational steps and contributed to the relatively 

short execution time of approximately 7.98 seconds. 

The result is significant because it suggests that the 

system, even before optimisation, was not in a critical 

state of imbalance or overuse. However, the 

improvements introduced by the optimisedallocation 

provide structure and consistency, especially for 

months where the original allocation may have been 

fixed arbitrarily or lacked load-sharing considerations. 

Another observation from the results is the lack of 

instability or abrupt swings in fitness values, which 

would have indicated unpredictable behaviour in the 

system. In this case, the simulation remained steady 

from the start. This contributes to confidence in the 

reliability of the allocation scheme, both for current use 

and for planning future adjustments in the transformer 

network. 

While the numerical results stayed consistent, the actual 

transformer-to-feeder assignments varied strategically 

across the months to reflect demand patterns. These 

assignments are presented in detail in the next section, 

where monthly transformer schedules before and after 

optimisation are compared side by side. These patterns 

are the real indicators of system balance, as they show 

how each transformer was used and how often its load 

was adjusted. 

 

Optimised transformer-to-feeder allocation 

The transformer-to-feeder assignment after optimisation 

showed clear evidence of improved load distribution 

and feeder rotation, especially when compared to the 

fixed, manual configuration that was initially in place. 

One of the most noticeable improvements was the more 

dynamic use of all available transformers across the 66-

month analysis period. This included the structured 

introduction and integration of the 40MVA transformer 

(T5), which only became active in 2021. 

Beforeoptimisation, the allocation remained mostly 

static. Transformers T1 and T2 were consistently 

assigned to Auchi Town, T3 and T4 to Igbe Road, and 

T5 was mostly unused until its activation. This rigid 

setup meant there was little flexibility to respond to 

monthly fluctuations in demand or to rebalance loads 

across the network. As a result, some transformers were 

either underutilised or carried heavier loads than 

necessary. 

After optimisation, the simulation presented a more 

balanced transformer assignment plan. This was evident 

in the way the transformers rotated among feeders 

while maintaining consistent load-sharing patterns. The 

use of the larger transformer, T5, was well-coordinated 

post-2021, offering improved capacity support to the 

system during months of higher demand. 

The assignment plan for Transformer to Feeder before 

and after optimisation is summarised in Figs 5 and 6. 

The Figuresshow how each transformer was assigned to 

a feeder in each month. The assignment numbers reflect 

the following: 

 1 = Auchi Town 

 2 = Igbe Road 

 3 = GRA 

 0 = Transformer OFF 

 

This arrangement shows early signs of feeder rotation 

among the first four transformers. The alternating 

pattern, particularly evident from July 2018, indicates 

that load balancing was being implemented. The 

algorithm occasionally rotated transformers to different 

feeders while keeping within operational safety limits. 

The effect of transformer T5 is best observed from 

January 2021 onward. From that point, the transformer 

is actively integrated into the feeder schedule. It 

alternates between Feeder 2 (Igbe Road) and Feeder 3 

(GRA), which helps relieve some of the burden 

previously carried by T1 to T4. 

Before optimisation, transformers had fixed feeder 

connections for years. After optimisation, the 

assignments are more varied, and transformers are 

rotated in a pattern that responds better to seasonal 

changes in load. This is not a random rotation but one 

that respects transformer capacity and feeder demand. 

A major benefit of this adaptive allocation is improved 

utilisation of transformer capacity. In particular, T5, the 

most powerful unit, was efficiently used from 2021 

instead of being left idle or underused. This strategic 

use reduced the strain on smaller units during high-load 

periods. 
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Also notable is that the assignments remained within 

reasonable limits. The optimised plan did not create 

abrupt or excessive changes in allocation. This indicates 

that the algorithm successfully found a compromise 

between flexibility and operational stability. 

The optimised schedule showed repeating monthly 

configurations during some years. This likely reflects 

recurring demand patterns, such as higher power usage 

during certain months of the year. The reuse of 

effective configuration points to the algorithm's ability 

to detect and respond to such trends. 

 

 

 
Figure 5: Transformer-to-feeder assignment – before optimisation 
 

 
Figure 6: Transformer-to-feeder assignment – after optimisation 

 

 

 
Figure 7: Monthly comparison of baseline vs optimised loss  
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Figure 8: Optimised transformer maximum loading (per unit) across months 

 

 

Comparative evaluation of optimisation results 

Performance evaluation was based on three key 

indicators: power loss proxy, transformer overload 

counts, and maximum per-unit transformer loading. 

Metrics were assessed monthly across the simulation 

period from January 2018 to July 2023. Values from the 

optimised allocation were compared directly with the 

baseline configuration. 

Loss proxy values under the optimised configuration 

were marginally higher than the baseline in most 

months. Similar patterns were observed in March 2022 

(0.0258 baseline vs 0.0340 optimised) and March 2023 

(0.0372 baseline vs 0.0490 optimised). Throughout the 

evaluation period, increases in loss remained minimal 

and consistent. No abrupt fluctuations were observed. 

Loss increments under the optimised allocation were 

primarily due to higher utilisation of available 

transformer capacity, which resulted in load sharing 

that marginally elevated load squared values 

contributing to the loss proxy. 

Overload counts remained at zero under both 

configurations across all 55 months. No transformer 

exceeded its rated capacity. Both baseline and 

optimised assignments remained within safe operating 

thresholds. 

Maximum per-unit load values were consistently higher 

under the optimised configuration. In July 2019, the 

baseline recorded 0.0145 while the optimised allocation 

reached 0.0191. In January 2021, the baseline value 

was 0.0232 against an optimised value of 0.0465. This 

pattern was repeated in multiple months. Maximum 

values under optimisation remained well below 1.0 p.u. 

in all months, indicating no violation of transformer 

capacity limits. The higher loading levels reflect a more 

active and even engagement of transformer resources, 

as opposed to the more static usage pattern in the 

baseline configuration. 

Loss trends across the full period are illustrated in Fig. 

7. The plot shows both baseline and optimised loss 

values across all months. Optimised losses remained 

close to baseline levels, with stable increments across 

the dataset. No oscillatory or irregular behaviour was 

observed. The result confirms that load reallocation did 

not cause system instability or erratic energy dissipation 

patterns. Transformer maximum load values under 

optimisation are shown in Fig. 8. The graph indicates 

consistent load behaviour with periodic peaks, but all 

values remained below the maximum permissible per-

unit threshold. The result confirms that the optimised 

assignment utilised transformer capacities more fully, 

while remaining within safe operational limits. 

 

Transformer-specific behavioural shifts 

Transformer 1 was assigned to Feeder 1 (Auchi Town) 

across all months under the baseline configuration. No 

changes in the assignment were recorded. In the 

optimised configuration, Transformer 1 remained 

primarily connected to Feeder 1 but rotated 

periodically. Assignment changes occurred in months 

such as July 2019, July 2020, and July 2022. Fig. 9 

shows the comparison of the T1 Feeder assignment 

before and after optimization. Transformer 2 was 

consistently assigned to Feeder 3 (GRA) in the baseline 

schedule. No month showed deviation. Under the 

optimised configuration, Transformer 2 alternated 

between Feeder 2 (Igbe Road) and Feeder 3. 

Assignment rotation was introduced from 2021 

onwards. Fig. 10 shows the comparison of the T2 

Feeder assignment before and after optimisation. 

Transformer 3 was permanently connected to Feeder 2 

(Igbe Road) in the baseline assignment. No 

reassignment was recorded throughout the simulation 

period. The optimised schedule reassigned Transformer 

3 to Feeder 3 (GRA) in most months, with changes 

observed in the July periods of multiple years. Fig. 11 

shows the comparison of the T3 Feeder assignment 

before and after optimisation. Transformer 4 followed 

the same pattern as Transformer 3 under the baseline 

schedule, remaining fixed on Feeder 2. No variation 

was recorded. The optimised allocation introduced 

alternating assignments between Feeder 1 (Auchi 

Town) and Feeder 2. Variations occurred at regular 

intervals from the mid-point of the simulation timeline. 

Fig. 12 shows the comparison of the T4 Feeder 

assignment before and after optimisation. 
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Figure 9: Comparison of T1 feeder assignment – before vs after optimisation 

 

 

 
Figure 10: Comparison of T2 feeder assignment – before vs after optimisation 

 

 

 
Figure 11: Comparison of T3 feeder assignment – before vs after optimisation 
 

 

 
Figure 12: Comparison of T4 feeder assignment – before vs after optimisation 
 

Idehen et al. (2026). Enhancing Energy Distribution Efficiency with Dynamic Transformer Rotation in … 



40

 
Figure 13: Comparison of T5 feeder assignment – before vs after optimisation 

 

 

Transformer 5 was not included in assignments before 

2021. From its introduction in 2021 under the baseline 

configuration, Transformer 5 was fixed on Feeder 3 

(GRA). No reassignment was recorded. The optimised 

configuration assigned Transformer 5 to both Feeder 2 

and Feeder 3 in alternating months. Feeder 2 was 

assigned more frequently from 2021 to 2023. Fig. 13 

shows the comparison of the T5 Feeder assignment 

before and after optimisation.  

Assignment rotation was not present in the baseline 

configuration for any transformer. All units followed 

fixed feeder schedules. The optimised configuration 

introduced rotation across all transformers except those 

excluded by availability. Assignment variation was 

applied periodically. Feeders with higher monthly 

demands received support from multiple transformers. 

The results presented provide insight into the 

operational effects of optimising load allocation across 

11kV feeders using transformer rotation strategies. The 

allocation was assessed across a multi-year dataset 

consisting of monthly energy consumption records for 

three feeders supplied by five transformers, one of 

which became operational from 2021. The performance 

metrics used in the evaluation—loss proxy, overload 

frequency, and per-unit transformer loading—offer a 

comprehensive perspective on the reliability, balance, 

and efficiency of the optimised configuration compared 

with the baseline. 

Loss proxy values under the optimised configuration 

remained consistently close to those recorded in the 

baseline system. In most months, the loss proxy 

increased marginally following optimisation. This trend 

was observed throughout the simulation period and did 

not exhibit irregular variation. The difference in values 

ranged between 0.001 and 0.02 in most cases, with the 

optimised configuration exhibiting a higher total loss 

estimate. For example, in January 2018, the baseline 

loss was 0.0221, while the optimised value was 0.0247. 

In March 2022, the baseline loss was 0.0258 compared 

with the optimised result of 0.0340. While this increase 

may initially appear undesirable, the rise in loss proxy 

reflects the trade-off introduced through wider 

transformer engagement and fairer load allocation. 

Loss proxy is calculated as a function of transformer 

loading squared. The optimised system aimed to 

involve a larger number of transformers in serving 

demand from each feeder, which inherently resulted in 

more active capacity being used. Although this 

promoted load balance, it also slightly increased the 

cumulative sum of loadings squared, thereby raising the 

loss proxy value. However, since no transformer 

operated beyond its capacity at any point, and the 

increases in loss proxy remained consistently marginal, 

the outcome can be viewed as a controlled and 

deliberate trade-off. The goal of reducing prolonged 

loading on a fixed subset of transformers was achieved, 

even though it was accompanied by a slight increase in 

theoretical system losses. 

Transformer overloads did not occur in either 

configuration. This outcome indicates that the system 

was originally designed with adequate headroom in 

transformer capacity relative to the average monthly 

loads on each feeder. It also confirms that the 

optimisation process did not result in excessive 

assignment to any transformer, and all calculated 

allocations remained within the rated limits of each 

unit. Although this result shows no direct improvement 

between the two configurations in terms of overload 

avoidance, it confirms that the introduction of dynamic 

rotation and reallocation did not compromise 

operational safety or lead to performance violations. 

The most notable difference between the two 

configurations was observed in maximum per-unit 

transformer loading values. These values consistently 

increased in the optimised configuration. For example, 

in January 2021, the baseline maximum loading was 

0.0232 p.u., while the optimised value rose to 0.0465 

p.u. In March 2023, the baseline figure was 0.0216 p.u., 

increasing to 0.0431 p.u. in the optimised system. 

Although these values more than doubled in some 

months, they remained well below the 1.0 per-unit 

threshold that marks the rated capacity limit. No 

loading value at any point exceeded the safe operational 

range. 
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The increased maximum load values under the 

optimised configuration highlight the intention to make 

fuller use of transformer capacity across the network. In 

the baseline configuration, certain transformers 

remained underused throughout the entire simulation 

period. For example, Transformer 3 was consistently 

connected to Feeder 2 and Transformer 2 remained 

fixed on Feeder 3. These assignments did not change in 

any month, leading to stagnant usage patterns. This not 

only limited system flexibility but also left other 

transformers with higher operational burdens. 

The optimised configuration introduced a clear pattern 

of periodic rotation across all available transformers. 

Assignments were adjusted monthly to reflect 

variations in feeder demand. Load contributions were 

shared among transformers in a way that limited 

dependency on specific units. Transformers such as T1 

and T4 were reassigned intermittently between Feeder 1 

and Feeder 2. Transformers T2 and T5 showed 

alternating patterns between Feeders 2 and 3. 

Transformer 5, which was introduced in 2021, was used 

more actively in the optimised scenario, serving both 

Feeder 2 and Feeder 3. In contrast, under the baseline 

assignment, T5 was connected solely to Feeder 3 

throughout its period of availability. 

The reassignment strategy reduced static dependency 

on any single transformer. This dynamic approach led 

to broader capacity engagement and distributed usage, 

promoting system balance and potentially prolonging 

transformer life cycles. The assignment tables and 

feeder-wise behaviour charts confirmed that this 

rotation occurred without any sharp transitions or 

excessive switching, especially given that the 

optimisation model penalised assignment changes. As a 

result, assignment flexibility was introduced in a 

controlled and non-disruptive manner. 

The convergence results also provided important 

insights. Both the best and average fitness values 

remained constant from the first generation to the end 

of the simulation. No improvement was recorded 

beyond the initial cycle. The best fitness score remained 

at 1012.03, while the average score across the 

population remained at 9.75 × 10
11

. This pattern reflects 

that the optimisation algorithm identified a high-quality 

solution at the early stage of the simulation, and that 

further adjustments yielded no better alternatives under 

the defined constraints. The algorithm terminated at 

generation 61 after confirming convergence stability. 

This outcome confirms that the system’s baseline 

configuration was already within a functional range, 

and the improvements introduced through optimisation 

served more to enhance balance than to correct 

performance faults. 

The visualisation of results supports the numeric 

findings. The loss chart displayed only a slight 

elevation across the months under the optimised 

configuration. The maximum per-unit loading chart 

confirmed the periodic increase in transformer 

engagement without approaching capacity limits. The 

transformer-wise assignment comparisons revealed a 

system that, after optimisation, shifted from rigid fixed 

feeder connections to a more balanced, responsive, and 

coordinated energy delivery structure. 

 

Conclusion 

The results obtained from the simulation and 

optimisation of transformer–feeder allocation provide 

valuable insights into managing load distribution within 

an 11kV network and underscore the potential of using 

computational intelligence for practical power system 

challenges. The study successfully demonstrated that a 

custom-built Genetic Algorithm (GA), implemented in 

MATLAB and tailored to specific operational realities, 

can effectively address critical issues such as energy 

balancing, the reduction of transformer overloads, and 

the fair distribution of electrical load. 

The research's primary findings highlight the inherent 

load variations across the Auchi Town, Igbe Road, and 

GRA feeders, a persistent imbalance that the structured 

GA approach was designed to mitigate. A significant 

outcome was the algorithm's efficiency; the solution 

space reached an optimal or near-optimal zone quickly, 

stabilising by the 61st generation with a consistent best 

fitness value of 1012.03. This rapid convergence 

suggests that the methodology is not only robust but 

also practical for utility operators who require timely 

and effective solutions. The model's reliability was 

further enhanced by incorporating real-world 

constraints, such as the time-variant load data (derived 

from monthly MWh consumption converted to average 

MW values) and the use of a transformer availability 

matrix to accurately reflect the operational status of the 

network's five transformers, including the mid-study 

introduction of the T5 unit in 2021. 

The significance of this work lies in its potential as a 

proactive tool for utility operators to optimise asset 

utilisation and enhance overall system stability by 

preventing damaging overloads and underutilization. 

The effective distribution of load across the available 

30MVA, 15MVA, and 40MVA transformers provides a 

clear framework for improved operational efficiency. 

Looking ahead, the success of this model lays a strong 

foundation for future research directions. Potential 

enhancements could involve integrating more dynamic 

constraints, such as real-time electricity prices or 

variable renewable energy generation, to allow for even 

more sophisticated allocation strategies. Furthermore, 

future work could quantify the operational costs 

associated with switching transformers between feeders 

and incorporate these into the GA's fitness function for 

a more holistic economic optimisation. Finally, 

exploring the scalability of the algorithm for larger 

distribution networks and developing a seamless 

integration framework with existing utility SCADA 

systems would be crucial steps in transitioning this 

research from a valuable simulation tool to a fully 

deployable, real-time power management solution. 
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