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Abstract

This work deals with the numerical solution of a time-fractional heat equation where
a Caputo fractional derivative of order 0< a < 1 is used in place of the traditional
first-order time derivative. This change improves the model's capacity to represent
anomalous diffusion behavior and memory effects, which are frequently seen in
intricate engineering and physical systems. Applying and evaluating the Fractional
Reduced Differential Transform Method (FRDTM) to solve this fractional-order
partial differential equation is the aim of this work. The Fractional Variational
Iteration Method (FVIM) was used to validate the findings. For different fractional
orders, namelya = 0.2,0.5,0.7, and the classical case where o = 1 with a known
exact solution, two numerical examples were performed. The findings demonstrate
that FRDTM offers extremely stable and accurate solutions that closely match the
exact solution in the classical case (a« = 1). When it comes to capturing the change
from rapid decay at lower fractional orders to more sustained solution profiles as the
order increases, the FRDTM performs better than the FVIM. The differences
between the two methods demonstrate FRDTM's superior convergence and accuracy
across all cases considered. Finally, this study demonstrates the effectiveness of
FRDTM as reliable semi-analytical tool for solving fractional heat problems, and it
contributes to advancing computational approaches for solving partial differential
equations in science and engineering.
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Introduction

The heat equation, a fundamental partial differential
equation, describes how temperature evolves in a region
over time. It falls into the category of PDEs known as
parabolic equations, which are distinguished by their
connection to diffusion processes [1]. The heat equation
has numerous applications in applied mathematics and
engineering, particularly in industrial processes such as
heat exchangers, distillation columns, and the diffusion
of chemicals through various media [2, 3].

In Evans [4], the integer order heat equation in the
domain Q ¢ R" (n = 1,2) is expressed as follows;
u(x,t) = alAu(x,t) + q(x,t), x€ Q, t>0 (D

Subject to the initial condition and the homogeneous
Dirichlet boundary condition

u(x, 0) = f(x) (2a)
u(x, t) = g(t) (2b)
where Au is the Laplacian operator expressed as,
= 9"
Au = 2. ox 3)

i=1

And u(x, t) is the temperature at a specific spatial point
X = (Xq,X3,X3,..,Xy),t IS the time variable, a> 0 is
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thermal diffusivity, and q(x,t) is source term;the
equation is considered homogeneous when the source
term q(x,t)equals zero. Although exact solutions of
such equations exist under certain conditions, many
real-life processes exhibit memory and nonlocal effects
that are not adequately captured by integer-order
models. To address this limitation, fractional
derivatives have been introduced as powerful tools for
modeling anomalous diffusion and other complex
dynamics in heterogeneous or memory-dependent
media [5, 6].

Fractional-order models, especially those using the
Caputo derivative, are particularly good at describing
systems  with  sub-diffusion or super-diffusion
characteristics. These models generalize integer-order
equations by replacing the standard first-order time
derivative with a fractional derivative of order, where
this change enables the model to account for long-term
memory effects in the system [7]. Metzler and Klafter
[5] employed the fractional Fokker—Planck equation to
model sub-diffusive phenomena occurring near thermal
equilibrium. Yuste and Lindenberg [8] employed a
fractional diffusion equation to model the sub-diffusion
of particles exhibiting coagulation and annihilation
dynamics. Chang and Sun [9] explored the gas transport
process in heterogeneous media using a fractional
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advection—dispersion model, which can characterize
heavy-tailed behavior and early breakthrough
phenomena in transport. Ahmad et al. [10] investigated
a three-dimensional multi-term fractional anomalous
solute transport model for groundwater contamination.
The nonlocal nature of fractional derivatives often
makes analytical solutions difficult to obtain.
Consequently, numerical methods have become
essential tools for solving fractional diffusion
equations. Several approaches have been employed by
researchers, including the Fractional Variational
Iteration Method [11], the Fractional Homotopy
Analysis Method [12], the Fractional Homotopy
Perturbation Method [13], the Generalized Fractional
Differential Transform Method [14], the Fractional
Sumudu Decomposition Method [15], the Radial Basis
Function Finite Difference Method [16], and the
Chebyshev Collocation Method [17]. Among these, the
Fractional Reduced Differential Transform Method
(FRDTM) has attracted considerable attention for its
simplicity, efficiency, and accuracy [18]. In this study,
we aim to apply the FRDTM to solve time-fractional
heat equations. The results obtain by FRDTM will be
compared with the Fractional Variational Iteration
Method (FVIM) and validated against exact solutions.
We will also analyze the system’s behavior by varying
fractional order a.

Materials and Methods

The Fractional Reduced Differential Transform
Method (FRDTM)

The basic definitions of the Fractional Reduced
Differential Transform Method (FRDTM) and its
inverse transform are presented in [19] as follows:

Let u(x,t) be a function of two variables expressed as
product of functions as,

u(x, t) = vx)w(t) 4

Based on the properties of the Fractional Differential
Transform Method (FDTM) [20], we have:

u(x t) = Z V(X' X Z w(j)t = z Utk (5)
i=0 k=0

i=0

where Uy is the t-dimensional spectrum function of
u(x, t)

Definition 1: If the function u(x, t) is analytical and k-
times continuously differentiable with o derivatives
with respect to the time t and space x in the domain of
interest, then let the Fractional Reduced Differential
Transform (FRDT) of u(x, t) be given as

FRDT[u(x, )] = Vx (x) = m [0 uxv)] _,
F(ka +1) [atk“ u t)] 7%’
k=012,.. ()

Where o > 0 the time fractional order derivative, t-
dimensional  spectrum  function Uy(x) is the
transformation function and u(x,t) is the original
function.

Q

Definition 2: The differential inverse fractional reduced
transform of Uy (x) denoted by u(x, t) is given by

FRDT (U, (9) = u(8) = ) U ()t~ ) (7)
k=0

Combining equations (6) and (7), we have
uCot) = Z F(ka +1 [6tk°‘ ue t)]

Equation (8) clearly shows that the concept of the
reduced differential transform is derived from the
power series expansion. Since the initial conditions are
expressed in terms of integer-order derivatives, the
corresponding transformations of the initial conditions
are defined as:

(t—to)**  (8)

t=to

Uy

{ k

I ek

u(t)| fork=0,1,23,..(ma—1) if /aE VA
= (k/a) Lt« ]
t=tg

0 if K/y gzt 9

Theorems of Fractional Reduced Differential

Transform Method (FRDTM)

We present some basic theorems of the Fractional
Reduced Differential Transform Method (FRDTM) as
explained in a study [21]. Let u(x,t)), v(x,t)), and
w(x,t) be analytical and k-times continuously
differentiable functions with respect to the space
variable x and the time variable t. Then, the following
theorems are given below:

Theorem 1: ifu(x,t) = v(x,t) then Uy (x,t) = Vi (%, t)

Theorem 2: if u(x,t) = v(x,t) £ w(x,t), then Uy (x,t) =
Vk (X, t) i Wk (X, t)

Theorem 3: ifu(x,t) = cv(x,t), where ¢ is a
constant, then U (x, t)= cV (x,t)

Theorem 4: ifu(x,t) = :n

then Uy (x,1) =

Theorem 5: ifv(x,t) = u(x t), then V. (x,t) =
I'(a(k+n)+1)
WUk(k+n) n—123

Theorem 6: if u(x,t) = v(x, t)w(x,t), then Uy
0 Vi) Wie—i (%).

Fractional Variational Iterational Method (FVIM)
for validation

To evaluate the accuracy of the FRDTM, we employ
the Fractional Variational Iteration Method (FVIM).
FVIM is a semi-analytical technique used to solve
Fractional Differential Equations (FDEs), including
ordinary, partial, and integro-differential types. It
extends the Variational Iteration Method (VIM),
originally proposed by Ji-Huan He in 1999 [22], to
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fractional-order systems. In this study, FVIM serves as
a reference approach for comparison.

The FVIM correction functional for equation (1) is
constructed as follows [23]:

U1 (x,0) =

u (x) + e +1)f7\(r)[u (x,1)-alAu(x,t)+a(x1)](dT)“
(10)

where 0 < a <1, A(t) =—-1 is the Lagrange

multiplier and wg,; is the (k+ 1)th approximation
produced by the wvariational iteration correction
functional. For information on the derivation and
applications of FVIM, see Odibat and Momani [24].

Numerical Examples

Lafia Journal of Scientific & Industrial Research, 3(2)

And u(x,t) represents the distribution of heat over
space x and time t, ['(.) is the gamma function. Since
the exact solution is expressed in terms of sine
functions, the initial condition u(x,0) =x over the
interval [0,2] is expressed using a Fourier sine series.
The sine series expansion is given as:

u(x, 0) Z — (—=1)¥*1sin (k;[x>

Implementation of Fractional Reduced Differential
Transform Method (FRDTM) on problem 1

In this section, weapply the Fractional Reduced
Differential Transform operator FRDT on both sides of

equation (11) and (12a)

(15)

P.roblem 1: C_onsider the time-fractional one- By using Theorem 4 and 5, equation (11) is
dimensional equation transformed to
o 2
v = a U(X’t) = 36 U(X,t), 0 <« F(ka + 1) aZUk(X)
ot 0x? U1 (¥) = Flak+ 1) + 1) 3 a2 (16)
<1, (11)
Subject to the initial and boundary conditions The initial condiFion and . in equation (_123) can be
transformed by using equation (9) to obtain
u(x,0) = x, (12a) _ 4 K1 (KTIX
u(0,1) = 0 (12b) Up 09 = ) 1 (-Tsin (=) a7
u(2,t) =0 (120¢) k=1
With the exact solution given as using equation (16) i.n (17), we obtained the following
(X ) Uy (x) values successively for k =0,1,2,3,4, ...,
o kmnx 3T[2k2 fork=0
Z—( 1)+sm< 5 )Ea - t* (13)
Where DY is the Caputo fractional derivative operator
defined as [24]
du(r,
D{ = 0Tux Y ! t a(Tt)) d O0<a<1 14
CTTae TTd-w J, t—pen O *= 14
r0xa+1) %0y (%)
Vo1 = F0 s D+ D (3 ax?
ra N
Ui (x) = @O+ D+ 1) sz Zk—( 1) sm( )
U _ 3 ) (nx) 3mcsi <3T[X> & s <5T[X> Tresi <7nx>
1(x) = et D Tsin > msin > Tsin > msin >
fork=1
rlxa+1) %0, (%)
U = s d s D+ D <3 ax?
U 3 r() ik 3 _ (nx) 3msi (3nx> S (51‘[X) s (71‘[X)
2 =taa+rn+| S| Tern| ™" 2 N T2

Up (%) = — 3 (“ )+27 (3n )+ 125 <5n >+ 343 (7“)
2(%) = Mot D °sin > m3sin > m3sin 2 m3sin >
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Then, using the inverse transformation rule in equation (7), the approximate solution of u(x, t) is obtained by
u(x,t) = Z U ()t , k=0,1,2, 3 4 anda = 0.2,05,0.7 and 1 (18)

u(x, t) = Up(x) + Uy ()t + U, ()2 +

x0 _(4 ) (nx)+ 4 (3nx>+ 4 (Sm() 4 (711)() 3 ) ) (nx)
u@x,t ={_sin(- 31Tsm 51T1Tsm > 71T1Tsm NCEE) —msin{ -
3mcsi 31'[x) .y 51'[x) s <71'[x @
— 3msin (T — 5isin (T — 7msin T)

PR sin (%) + 27 (3n >+ 125 (Sn >+ 343 (hx) 2% +
4F(2a+ 1) m°sin 2 T[ sin 2 T[ sin 2 T[ sin 2

The Fractional Variational Iteration correction functional for equation (10) is constructed as

O“uk(x ) 0%u(x1)

1
uk+1(x.t)=uk(x)+mf AlT )[ —3— ](dr)a,0<as1 (19)

where A(t) = —1 is the Lagrange multiplier.

Problem 2: Consider the time-fractional 2-dimensional heat equation.
0“u  90%u 0%u
WZWJFW’ 0<a<l O0<x<mand0<y<mt>0 (20)

Subject to the initial condition and boundary condition
u(x,y,0) = sin(x) sin(y) (21a)
u(0,y,t) = u(my,t) =ux0,t) =ulx,mt) =0 (21b)

With the exact solution is given as
ux,y,t) = E.(=2t*) sin(x) sin(y) ~ (22)

where E, (t) is One-parameter Mittag-Leffler function [25] defined as
[ee) ta
E (0 = ;7F(ka+ 5 (23)

Implementation of Fractional Reduced Differential Transform Method (FRDTM) on problem 2
In this section, weapply the Fractional Reduced Differential Transform operator FRDT on both sides of equation

(20) and (21a)
By using Theorem 4 and 5, equation (20) is transformed to

F(ka+1) (9*Ur(xy) + Uk (xy)
Flak+1)+1) ox? dy?

Uk+l (X' Y) = (24)

The initial condition in equation (21a) can be transformed by using equation (9) to obtain
Uy = sin(x) sin(y) (25)

Using equation (24) in (25), we obtained the following Uy(x, y) values successively for k = 0,1,2,3,4, ...,
fork =10
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32Ug (x.y)
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Uo+1(xy) TT(a(0+D+1)

r(1)

N T Te@+ D+ D

0x

azUo(xy))
ox2 dy?

4]
y

62 2
(—2 (sin(x) sin(y)) + 307 (sin(x) sin(y)))

2sin(x) sin(y)
 T(a+1)
fork=1

Ul (X,t) =

T xa+1) (0°Ui(xy)  0°Ui(xy)
U0 = ra s D+ D ( ax2 ay? >
rlxa+1) [ d* (—2sin(x)sin(y) 0% (—2sin(x) sin(y)
Ta(l+1D+1) (ﬁ( T'(a+ 1) >+W( T(a+ 1) ))
I'a+1) ) )
2o+ 1) <F(a Ty (sin®) Sm(yn)
4sin(x) sin(y)

U (xy) = TRat D)
fork =2

Uii(xy) =

U,(xy) =

2 2
Ui2(xy) = O xat ) (a S + 07Uz (%, Y)>

Fla(l1+1)+1) 0x2 dy?

rexa+1) (0% _ 2 |
T2+ 1D+ 1) \ox? (4sin(x) sin(y)) + ay? (4sin(x) sin(y))

I/2a/+ 1/ - |
F@Ga+1) (F(Za T (4sin®) Sm(y)))
_ 8sin(x) sin(y)
U3(X, Y) - _W

Uy (xy) =

Us(x,y,t) =

Then, using the inverse transformation rule in equation(7), the approximate solution of u(x,y, t) is obtained by
10
u(x, y,t) = Z Uo )t , k=0,1,2 3 4 anda=05,0.7 and 1 (26)
k=0

ux,y,t) = Up(xy) + Uy ()% + U (xy)t2* + Uz (xy)t3 ...

2sin(x) sin(y) o

4sin(x) sin(y) .

8sin(x) sin(y) (3

u(x,y,t) = sin(x) sin(y) — NCEED)

ra+1) FGa+1)

The Fractional Variational Iteration (FVIM) correction functional for equation (20) is constructed as

0%u(x,y,t) 0 Zu(x,y,1)

a%u(x,y,1)

1 t
uk+1 (X' Y' t) = Uy (X' Y) + ['(a+1) .{; )L(T)I: Tt 9x2
where A(t) = —1 is the Lagrange multiplier

Results and Discussion

In this section, the approximate solutions of the
fractional heat equation in both one- and two-
dimensional cases are compared.

For the one-dimensional case, approximate solutions
were obtained for fractional ordersa. = 0.2, 0.5, 0.7, and
1.0 using the Fractional Reduced Differential
Transform Method (FRDTM) and the Fractional
Variational Iteration Method (FVIM). The solutions
were computed over the time interval t € [0,1] at a
fixed spatial point x = 0.3, with the integer-order case
corresponding to o = 1.0.

For the two-dimensional case, the heat equation was
solved using the same numerical approaches (FRDTM
and FVIM) for fractional orders o = 0.5,0.7 and 1.0.

ay2 ] (do)* (27)

The solutions were computed over the same time
interval t € [0,1] at fixed spatial points x:g and
y=3

All computations were carried out using Maple 21. The
FRDTM was implemented up to the tenth iteration,
while the FVIM was applied up to the tenth term,
yielding approximate solutions for u(x, t) and u(x, y, t).
Table 1 show that both FRDTM and FVIM perfectly
reproduce the classical solution of the model when the
fractional ordera =1 at0 <t <1land 0 < x < 2. For
all solutions u(x,t) points, the approximate solutions
match the exact solution very well, with absolute errors
effectively zero.
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Table 1: Numerical results for Problem 1 (a =1.0,0 < x < 2 andt € [0,1])

Exact solution

Absolute error Absolute error

x t fora=1 FRDTM FVIM u(x,t) fora=1 u(x,t) fora=1
|Exac — FRDTM | |Exact — FVIM)|
0 0 0 0 0 0 0
0.1 0.05 0.06906582 0.06906582  0.06906582 0 0
02 01 0.04770088 0.04770088  0.04770088 0 0
03 0.15 0.03294501 0.03294501  0.03294501 0 0
04 0.2 0.02275374 0.02275374  0.02275374 0 0
05 0.25 0.01571506 0.01571506  0.01571506 0 0
06 0.3 0.01085373 0.01085373  0.01085373 0 0
0.7 035 0.00749622 0.00749622  0.00749622 0 0
08 04 0.00517733 0.00517733  0.00517733 0 0
09 045 0.00357576 0.00357576  0.00357576 0 0
1 05 0.00246963 0.00246963  0.00246963 0 0
11 055 0.00170567 0.00170567  0.00170567 0 0
1.2 0.6 0.00117804 0.00117804  0.00117804 0 0
1.3 0.65 0.00081362 0.00081362  0.00081362 0 0
14 07 0.00056193 0.00056193  0.00056193 0 0
15 0.75 0.0003881 0.0003881 0.0003881 0 0
16 08 0.00026805 0.00026805  0.00026805 0 0
1.7 085 0.00018513 0.00018513  0.00018513 0 0
1.8 09 0.00012786 0.00012786  0.00012786 0 0
19 0.95 8.83E-05 8.83E-05 8.83E-05 0 0
20 10 6.10E-05 6.10E-05 6.10E-05 0 0
Table 2 present the FRDTM and FVIM for a = 0.2at ]
0<t<1 and fixed x = 0.3. It was observed that the |
FRDTM method consistently yielded slightly higher 0254
solution values than FVIM, particularly at early times
petween t=0to O_.3. The differenc_e diminished as time —— FRDTM =02
increased, reflecting the damping nature of the ] - SEVIM 4=0.2
fractional system. Fig. 1 shows 2D surface plot of the 020
result obtained by the FRDTM and the FVIM 1
approximate solutions u(x, t).
Table 2: Numerical results for Problem 1 (a = 0.5
0.2x=0.3and t € [0,1]) st
x t FRDTM FVIM oY )
0.3 0 0.276000000 0.264000000 ]
0.05 0.131654430 0.125930324 ]
0.1  0.090928217 0.086974816 107
0.15 0.062800322 0.060069873 |
0.2 0.043373560 0.041487753
0.25 0.029956307 0.028653859
0.3 0.020689570 0.019790024 0.05-
0.35 0.014289422 0.013668143 ]
0.4 0.009869107 0.009440015 E
0.45 0.006816180 0.006519824 1
0.5 0.004707651 0.004502970
0.55 0.003251378 0.003110014 T S . TR, ST, B O, Tt g
0.6 0.002245591 0.002147957 0 010203 04 050607 08 09
0.65 0.001550936 0.001483504 ¥
0.7 0.000739810 0.000707644 Figure 1: 2D surface plot comparing FRDTM and
0.75 0.000510956 0.000488740 the FVIM approximate solutions u(x, t) for a = 0.2
0.8 0.000352896 0.000337553 ato0<t<1,and x=0.3
0.85 0.00024373 0.000233133
0.9 0.000168334 0.000161016
0.95 0.000243730 0.000233133
1.0 0.131654430 0.125930324
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Table 3: Numerical results for Problem 1 (a = 0.5,
x=0.3and t € [0,1]).

X t FRDTM FVIM
0.3 0.0 0.277500000 0.015000000
0.05 0.191657662 0.010359874
0.1 0.132369943 0.007155132
0.15 0.091422392 0.004941751
0.2 0.043609286 0.002357259
0.25 0.030119113 0.00162806
0.3 0.020802013 0.001124433
0.35 0.014367082 0.000776599
0.4 0.009922744 0.000536365
0.45 0.004733236 0.000255851
0.5 0.003269048 0.000176705
0.55 0.001559365 8.43E-05
0.6 0.000743831 4.02E-05
0.65 0.000513733 2.78E-05
0.7 0.000354814 1.92E-05
0.75 0.000245055 1.32E-05
0.8 0.000169249 9.15E-06
0.85 0.000121468 0.000118271
0.9 8.39E-05 8.17E-05
0.95 5.79E-05 5.64E-05
1 0.906317 0.882466
]
0254
020
i —— FRDTM_a=0.5
SO0 154 — - FVIM 0=0.5
0.10
0.05

0 01 02 03 04 05 06 07 08

t
Figure 2: 2D surface plot comparing FRDTM and
the FVIM approximate solutionsu(x, t) for a = 0.5

at0<t<1land x=0.3.

Table 3 shows the results of FRDTM and FVIM
fora =05, at 0<t<1 and fixedx= 0.3, the
numerical results reveal a significant discrepancy
between FRDTM and FVIM, particularly in the early-
time region. The FRDTM method begins with a much
higher and more physically realistic value, whereas
FVIM substantially underestimates the solution. As
time increases, the two methods converge, with
differences, dropping to negligible levels. Fig. 2 shows
the 2D surface plot comparison between the FRDTM
and FVIM solutions of u(x, t).

Lafia Journal of Scientific & Industrial Research, 3(2)

Table 4 and Fig. 3 presents the result obtained by the
FRDTM and the FVIM approximate solutions u(x, t)
for « = 0.7 at fixed x=0.3 and0 <t < 1. It was
observed that both FRDTM and FVIM produce
increasing solutions at x = 0.3 over time. The FRDTM
results are consistently higher than those from FVIM
across the entire time domain. While the difference is
small at early times, it grows steadily, reaching a
maximum absolute difference of approximately
0.023851 att = 1.0. This trend indicates that FVIM
underestimates the solution and is less effective at
tracking the growth behavior inherent in fractional
systems ata = 0.7.

Table 4: Numerical results for Problem 1 (a =
0.7x=0.3and t € [0,1])

143

X t FRDTM FVIM
0.3 0 0 0
0.05 0.045316 0.044123
0.1 0.090632 0.088247
0.15 0.135948 0.132370
0.2 0.181263 0.176493
0.25 0.226579 0.220617
0.3 0.271895 0.264740
0.35 0.317211 0.308863
0.4 0.362527 0.352987
0.45 0.407843 0.397110
0.5 0.453158 0.441233
0.55 0.498474 0.485356
0.6 0.54379 0.529480
0.65 0.589106 0.573603
0.7 0.634422 0.617726
0.75 0.679738 0.661850
0.8 0.725053 0.705973
0.85 0.770369 0.750096
0.9 0.815685 0.794220
0.95 0.861001 0.838343
1.0 0.906317 0.882466
u(x. 1)

02 0.4 0.6 08 1

0

t
Figure 3: 2D surface plot comparing FRDTM and
the FVIM approximate solutions u(x, t) for a = 0.7

at0<t<1land x =0.3.
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Table 5: Numerical results for Problem 2 (a = 1.0,t € [0,1] a fixed x = gand y =

Q

SR

)

Exact Solution FRDTM FVIM Absolute error u(x,y,t) Absolute error u(xy,,t)
fora=1 fora=1 fora=1 |Exac — FRDTM| |[Exact — FVIM)|

0 0.7071067811866 0.7071067811866 0.7071067811866 0 0

0.1 0.5789300674675 0.5789300674675 0.5789300674675 0 0

0.2 0.4739878501174 0.4739878501179 0.4739878501171 3.00E-13 8.00E-13
0.3 0.3880684295370 0.3880684295374 0.3880684294762 6.08E-11 6.12E-11
0.4 0.3177235589369 0.3177235589370 0.3177235575109 1.43E-09 1.43E-09
0.5 0.2601300638545 0.2601300638559 0.2601300475115 1.63E-08 1.63E-08
0.6 0.2129765892745 0.2129765892743 0.2129764696973 1.20E-07 1.20E-07
0.7 0.1743710272812 0.1743710272810 0.1743703854230 6.42E-07 6.42E-07
0.8 0.1427651436882 0.1427651436889 0.1427623969720 2.75E-06 2.75E-06
0.9 0.1168938512261 0.1168938512264 0.1168839647840 9.89E-06 9.89E-06
1.0 0.0957275423705 0.0957275423704 0.0956964965107 3.10E-05 3.10E-05

Table 5 and Fig. 4 demonstrate that both  Table 6: Numerical results for problem 2 ( a = 0.5,

approximations accurately match the exact solution at
t = Ofor fractional order a = 1and fixed x = g,y = g
As time increases, a slight increase in error, ranging
from 107! to 1077 was observed att< 0.3.
Additionally, the errors increase more dramatically
aftert = 0.7, reaching 107® at t=0.9 and 10 °at
t = 1.0. Despite this increase, both methods remain
stable and closely aligned, even as the magnitude of the
solution grows. The plot also shows that the FRDTM
and FVIM result are most identical across all time

steps.

Error Comparison at x=.7853981633975, y=1.570796326793
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Figure 4: 2D surface plotsof the absolute errors for
FRDTM and the FVIM approximate solutions
u(x,y,)witha = 1.0,t € [0,1] at fixed x =g and

U

y=3

te [0,1]afixedx=gandy=§)

t FRDTM FVIM

0 0.7071067811866  0.7071067811866
0.1 0.3914714125612  0.3914714125615
0.2 0.3245576738027  0.3245576738033
0.3 0.2894948326892  0.2894948326894
0.4 0.2794438512051  0.2794438512064
0.5 0.3083688206414  0.3083688206438
0.6 0.4078368115125  0.4078368115145
0.7 0.6299293473556  0.6299293473570
0.8 1.0515197688250 1.0515197688320
0.9 1.7790529159950 1.7790529160040
1.0 2.9535799576180  2.9535799576280

144
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Figure 5: 2D surface plot comparing FRDTM and
FVIM approximate solutions u(x,y,t) for a=

0.5, t € [0, 1]at fixed x =gandy =g
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The FRDTM and FVIM approximate solutions for
= 0.5 and t € [0,1] evaluated at the fixed spatial points

ng and yzg are shown in Table 6, and Fig. 5

displays the corresponding plot of the findings. The
solution u(x,y,0) = 0.7071067811866 is obtained
with the same values by both FRDTM and FVIM,
suggesting that both approaches meet the initial
condition att = 0. The solution u(x,y,t) first falls as
time goes from t = 0 to t = 1.0, reaching a minimum
0.2794438512051 at t = 0.4, before starting to rise
quickly from t = 0.5 to t = 1.0. As it is common with
many fractional-order systems, this pattern points to a
nonlinear time-dependent behavior of the solution.
Furthermore, the plot demonstrates how closely the
numerical values generated by the two approximations
matches.

For a = 0.7 and t € [0,1] at a fixed spatial pointx = g

andy = g it was observed in Table 7 and Fig. 6 that the

FRDTM and the FVIM solution start correctly at
approximately u(x,y,0) = 0.7071067811866, which
matches the exact initial condition. The differences
between FRDTM and FVIM are on the order of 10713
t0107'2, which is within machine precision, making
them practically equivalent. As time increases, both
approximate solutions then decrease smoothly from
0.4700471995218 att=0.1 to 0.1978999540998
att = 0.9 and then start to increase rapidly at t = 1.0.

Table 7: Numerical results for problem 2 (a = 0.7,
te[o,1] afixedx=;—[andy=g)

t FRDTM FVIM

0 0.7071067811866 0.7071067811866
0.1 0.4700471995218 0.4700471995225
0.2 0.3751665923260 0.3751665923264
0.3 0.3146103905760 0.3146103905760
0.4 0.2716624136508 0.2716624136511
0.5 0.2395301859173 0.2395301859170
0.6 0.2150033723052 0.2150033723066
0.7 0.1968903796777 0.1968903796781
0.8 0.1857532127087 0.1857532127090
0.9 0.1842483829923 0.1842483829922
1.0 0.1978999540998 0.1978999541006
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Comparison at x=.7853981633975, y=1.570796326795
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Figure 6: 2D surface plot comparing FRDTM and
FVIM approximate solutions u(x,y,t) for a=

0.7,te[0,1] atfixedx=gandy=g
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Table 8: Numerical results for Problem 2 (a = 0.5,
te(o,1] afixedx=2?"andy=47")

t FRDTM FVIM
0 0.5590169943748  0.5590169943748
0.1 0.3094853256341  0.3094853256344
0.2 0.2565853703255  0.2565853703260
03 0.2288657605368  0.2288657605369
0.4 0.2209197619843  0.2209197619853
0.5 0.2437869581516  0.2437869581535
0.6 0.3224233095100  0.3224233095115
0.7 0.4980028756566  0.4980028756577
0.8 0.8312993685451  0.8312993685501
0.9 1.4064648231260  1.4064648231340
1.0 2.3350099793730  2.3350099793810
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Figure 7: 2D surface plot comparing FRDTM and

FVIM approximate solutions u(x,y,t) for a=
4T

0.5,te[0,1] atfixedx=2?"andy=?

As seen from Table 8 and Fig. 7 for a = 0.5 at t €
[0,1], and fixed x = 2?“ and y = 4?“ both approaches
begin with the same value,
u(x,y,0) = 0.5590169943748, at t = 0, which is in
consistent with the initial condition. Early on, the
FRDTM and FVIM solutions exhibit a smooth decay
from 0.3094853256341, 0.3094853256344 at t = 0.1 to
0.2437869581516, 0.2437869581535 att = 0.5. At
t=10.6 andt = 0.7, both approximate solutions then
rise with time. Additionally, aftert =0.8, the
approximate solutions for both methods increase more
sharply, reaching 1.40646482312600, 1.406464823134
at t = 0.9 and 2.3350099793730, 2.3350099793810 at
t=1.0.




Ogunfiditimi & Akogwu (2025). Application of the Fractional Reduced Differential Transform Method ...
e —

Table 9: Numerical results for problem 2 (ax = 0.7,

te [0.1]afixedx=2?"andy=47")

t FRDTM FVIM

0 0.5590169943748 0.5590169943748
0.1 0.3716049395680 0.3716049395686
0.2 0.2965952334384 0.2965952334387
0.3 0.2487213524438 0.2487213524438
0.4 0.2147679954488 0.2147679954490
0.5 0.1893652389655 0.1893652389652
0.6 0.1699750902754 0.1699750902764
0.7 0.1556555122892 0.1556555122895
0.8 0.1468508087133 0.1468508087135
0.9 0.1456611363646 0.1456611363646
1.0 0.1564536509495 0.1564536509501

Comparison at x=1.256637061436, y=2.513274122872
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Figure 8: 2D surface plot comparing FRDTM and

FVIM approximate solutions u(x,y,t)a =0.7,t €

[0,1] at fixed x = %"and y = 4?“

Table 9 and Fig. 8 demonstrate that the FRDTM and
FVIM solutions yielded the same value, u(x,y,0) =
0.5590169943748 for a = 0.7 at t € [0,1] and fixed

X = 2?“ andy = 4?”. This indicates that both approaches

meet the initial condition. From 0.3716049395680,
0.3716049395686 att= 0.1 to 0.1456611363646,
att = 0.9, both approximations decrease steadily and
smoothly before starting to rise quickly att = 1.0.

Conclusion

In this work, the Fractional Reduced Differential
Transform Method (FRDTM) was applied to solve
fractional partial differential equations, including one-
and two-dimensional fractional heat equations. To
verify its reliability, the Fractional Variational Iteration
Method (FVIM) was also implemented for the same
problems. Numerical comparisons between FRDTM,
FVIM, and the exact solutions (« = 1) demonstrate that
FRDTM achieves higher accuracy with fewer
computational steps for fractional orders a = 0.2,0.5,
and 0.7. The results further indicate that, although

Q

FVIM is useful for validation, its convergence can be
slower in certain cases compared to FRDTM.

Error analysis confirms that FRDTM consistently
produces smaller absolute errors than FVIM. Overall,
this study establishes FRDTM as a reliable, efficient,
and powerful technique for solving fractional partial
differential equations, with FVIM serving as a suitable
validation method. The findings support the broader
application of fractional calculus in modeling complex
heat phenomena and provide a foundation for future
research on numerical methods for fractional PDEs.
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