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This work deals with the numerical solution of a time-fractional heat equation where 

a Caputo fractional derivative of order 0< 𝛼 ≤ 1 is used in place of the traditional 

first-order time derivative. This change improves the model's capacity to represent 

anomalous diffusion behavior and memory effects, which are frequently seen in 

intricate engineering and physical systems. Applying and evaluating the Fractional 

Reduced Differential Transform Method (FRDTM) to solve this fractional-order 

partial differential equation is the aim of this work. The Fractional Variational 

Iteration Method (FVIM) was used to validate the findings. For different fractional 

orders, namelyα = 0.2, 0.5, 0.7, and the classical case where α = 1 with a known 

exact solution, two numerical examples were performed. The findings demonstrate 

that FRDTM offers extremely stable and accurate solutions that closely match the 

exact solution in the classical case (α = 1). When it comes to capturing the change 

from rapid decay at lower fractional orders to more sustained solution profiles as the 

order increases, the FRDTM performs better than the FVIM. The differences 

between the two methods demonstrate FRDTM's superior convergence and accuracy 

across all cases considered. Finally, this study demonstrates the effectiveness of 

FRDTM as reliable semi-analytical tool for solving fractional heat problems, and it 

contributes to advancing computational approaches for solving partial differential 

equations in science and engineering. 

Keywords: 
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Introduction 

The heat equation, a fundamental partial differential 

equation, describes how temperature evolves in a region 

over time. It falls into the category of PDEs known as 

parabolic equations, which are distinguished by their 

connection to diffusion processes [1]. The heat equation 

has numerous applications in applied mathematics and 

engineering, particularly in industrial processes such as 

heat exchangers, distillation columns, and the diffusion 

of chemicals through various media [2, 3]. 

In Evans [4], the integer order heat equation in the 

domain Ω ⊂ ℝn  (n = 1,2) is expressed as follows; 

ut x, t = a∆u x, t + q x, t ,     x ∈  Ω ,   t > 0         (1) 

 

Subject to the initial condition and the homogeneous 

Dirichlet boundary condition 

u x, 0 = f x                                   (2a) 

u x, t = g t                                     (2b) 

where ∆u  is the Laplacian operator expressed as, 

∆u =  
∂nu

∂xi
n

n

i=1

                              (3) 

 

And u x, t  is the temperature at a specific spatial point 

x = (x1 , x2, x3, . . , xn),t is the time variable, a > 0 is 

thermal diffusivity, and q x, t  is source term;the 

equation is considered homogeneous when the source 

term q x, t equals zero. Although exact solutions of 

such equations exist under certain conditions, many 

real-life processes exhibit memory and nonlocal effects 

that are not adequately captured by integer-order 

models. To address this limitation, fractional 

derivatives have been introduced as powerful tools for 

modeling anomalous diffusion and other complex 

dynamics in heterogeneous or memory-dependent 

media [5, 6]. 

Fractional-order models, especially those using the 

Caputo derivative, are particularly good at describing 

systems with sub-diffusion or super-diffusion 

characteristics. These models generalize integer-order 

equations by replacing the standard first-order time 

derivative with a fractional derivative of order, where 

this change enables the model to account for long-term 

memory effects in the system [7]. Metzler and Klafter 

[5] employed the fractional Fokker–Planck equation to 

model sub-diffusive phenomena occurring near thermal 

equilibrium. Yuste and Lindenberg [8] employed a 

fractional diffusion equation to model the sub-diffusion 

of particles exhibiting coagulation and annihilation 

dynamics. Chang and Sun [9] explored the gas transport 

process in heterogeneous media using a fractional 
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advection–dispersion model, which can characterize 

heavy-tailed behavior and early breakthrough 

phenomena in transport. Ahmad et al. [10] investigated 

a three-dimensional multi-term fractional anomalous 

solute transport model for groundwater contamination. 

The nonlocal nature of fractional derivatives often 

makes analytical solutions difficult to obtain. 

Consequently, numerical methods have become 

essential tools for solving fractional diffusion 

equations. Several approaches have been employed by 

researchers, including the Fractional Variational 

Iteration Method [11], the Fractional Homotopy 

Analysis Method [12], the Fractional Homotopy 

Perturbation Method [13], the Generalized Fractional 

Differential Transform Method [14], the Fractional 

Sumudu Decomposition Method [15], the Radial Basis 

Function Finite Difference Method [16], and the 

Chebyshev Collocation Method [17]. Among these, the 

Fractional Reduced Differential Transform Method 

(FRDTM) has attracted considerable attention for its 

simplicity, efficiency, and accuracy [18]. In this study, 

we aim to apply the FRDTM to solve time-fractional 

heat equations. The results obtain by FRDTM will be 

compared with the Fractional Variational Iteration 

Method (FVIM) and validated against exact solutions. 

We will also analyze the system’s behavior by varying 

fractional order α. 
 

Materials and Methods 

The Fractional Reduced Differential Transform 

Method (FRDTM) 

The basic definitions of the Fractional Reduced 

Differential Transform Method (FRDTM) and its 

inverse transform are presented in [19] as follows: 

Let  u x, t  be a function of two variables expressed as 

product of functions as,  

u x, t = v x w t                        (4) 

 

Based on the properties of the Fractional Differential 

Transform Method (FDTM) [20], we have: 

u x, t =  v(i)xi ×  w j tj =  Uk(x)tk

∞

k=0

∞

j=0

∞

i=0

      ( 5) 

 

where Uk  is the t-dimensional spectrum function of 

u x, t  

 

Definition 1: If the function u x, t  is analytical and k-

times continuously differentiable with αth  derivatives 

with respect to the time t and space x in the domain of 

interest, then let the Fractional Reduced Differential 

Transform (FRDT) of u x, t  be given as  

FRDT u(x, t) = Vk x =
1

Γ kα + 1 
 (Da,t

α )k(u(x, t) 
t=t0

=  
1

Γ kα + 1 
 
∂kα

∂tkα
u(x, t) 

t=t0

,

k = 0,1.2,…                                (6) 
 

Where α > 0 the time fractional order derivative, t-
dimensional spectrum function Uk(x) is the 

transformation function and u(x, t) is the original 

function. 

Definition 2: The differential inverse fractional reduced 

transform of Uk(x) denoted by  u(x, t) is given by  

FRDT−1 Uk x  = u x, t =  Uk x  t − t0 
kα     (7)

∞

k=0

 

 

Combining equations (6) and (7), we have 

u x, t =  
1

Γ kα + 1 
 
∂kα

∂tkα
u(x, t) 

t=t0

 t − t0 
kα       (8)

∞

k=0

 

 

Equation (8) clearly shows that the concept of the 

reduced differential transform is derived from the 

power series expansion. Since the initial conditions are 

expressed in terms of integer-order derivatives, the 

corresponding transformations of the initial conditions 

are defined as: 
Uk

=

 
 
 

 
 1

 k
α  !

 
∂

k

α

∂t
k

α

u t  

t=t0

for k = 0,1,2,3, . .  mα − 1  if k α∈ℤ+

0 if k α  ∉ ℤ+ (9)

  

 

Theorems of Fractional Reduced Differential 

Transform Method (FRDTM) 

We present some basic theorems of the Fractional 

Reduced Differential Transform Method (FRDTM) as 

explained in a study [21]. Let u x, t ), v x, t ), and 

w x, t  be analytical and 𝑘-times continuously 

differentiable functions with respect to the space 

variable 𝑥 and the time variable 𝑡. Then, the following 

theorems are given below: 

Theorem 1: if u x, t =  v x, t  then Uk x, t =  Vk x, t  
 

Theorem 2: if  u x, t =  v x, t  ±  w x, t , then Uk x, t =

Vk x, t ± Wk x, t    

 

Theorem 3: if u x, t =  cv(x, t), where  c  is a 

constant, then Uk x, t = cVk x, t    
 

Theorem 4: if u x, t =  
∂n

∂xn v(x, t),   then Uk x, t =

 
∂n

∂xn Vk x, t . 

 

Theorem 5:  if v x, t =
∂αn

∂tαn u x, t ,    then   Vk x, t =
Γ(α k+n +1)

Γ(kα+1)
Uk k + n ,   n = 1,2,3, … 

 

Theorem 6: if  u x, t = v x, t w x, t ,  then Uk =
 Vi(x)Wk−i(x)k

i=0 . 

 

Fractional Variational Iterational Method (FVIM) 

for validation 

To evaluate the accuracy of the FRDTM, we employ 

the Fractional Variational Iteration Method (FVIM). 

FVIM is a semi-analytical technique used to solve 

Fractional Differential Equations (FDEs), including 

ordinary, partial, and integro-differential types. It 

extends the Variational Iteration Method (VIM), 

originally proposed by Ji-Huan He in 1999 [22], to 
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fractional-order systems. In this study, FVIM serves as 

a reference approach for comparison. 

The FVIM correction functional for equation (1) is 

constructed as follows [23]: 

uk+1 x, t =

uk(x) +
1

Γ α+1 
 

t
λ(τ)[uτ(x,τ)-a∆uk(x,τ)+q(x,τ)](dτ)α 

0

                                                                      (10)

where 0 < 𝛼 ≤ 1, λ τ = −1 is the Lagrange 

multiplier and uk+1 is the  k + 1 th approximation 

produced by the variational iteration correction 

functional. For information on the derivation and 

applications of FVIM, see Odibat and Momani [24].

 

Numerical Examples 

Problem 1: Consider the time-fractional one-

dimensional equation  

Dt
α =

∂αu(x, t)

∂tα
= 3

∂2u(x, t)

∂x2
,        0 < 𝛼

≤ 1 ,           (11) 

 

Subject to the initial and boundary conditions 

 

u x, 0 = x,                                                  (12a) 

 u 0, t = 0                                                     12b  

u 2, t = 0                                               (12c) 

 

With the exact solution given as  

u x, t 

=  
4

kπ

∞

k=1

 −1 k+1sin  
kπx

2
 Eα  −

3π2k2

4
tα      (13) 

where Dt
α  is the Caputo fractional derivative operator 

defined as [24] 

And u x, t  represents the distribution of heat over 

space x and time t, Γ(. ) is the gamma function. Since 

the exact solution is expressed in terms of sine 

functions, the initial condition u x, 0 = x  over the 

interval  0,2  is expressed using a Fourier sine series. 

The sine series expansion is given as: 

u(x, 0)  =  
4

kπ

∞

k=1

 −1 k+1sin  
kπx

2
                      (15) 

 

Implementation of Fractional Reduced Differential 

Transform Method (FRDTM) on problem 1 

In this section, weapply the Fractional Reduced 

Differential Transform operator FRDT on both sides of 

equation  (11) and ( 12a)  

By using Theorem 4 and 5, equation (11) is 

transformed to 

Uk+1(x) =
Γ kα + 1 

Γ α k + 1 + 1 
 3

∂2Uk x 

∂x2
            (16) 

 

The initial condition and in equation (12a) can be 

transformed by using equation (9) to obtain 

U0  (x) =  
4

kπ

∞

k=1

 −1 k+1sin  
kπx

2
                (17) 

 

using equation (16) in (17), we obtained the following 

Uk x  values successively for k = 0,1,2,3,4, …,

for k = 0
 

  

 

Dt
α =

∂αu(x, t)

∂tα
 =

1

Γ(1 − α)
  

∂u(τ,t)

∂τ
)

(t − τ)α−n+1
 dτ,     0 < 𝛼 ≤ 1                   (14)

t

a

 

U0+1(x) =
Γ 0 × α + 1 

Γ α 0 + 1 + 1 
 3

∂2U0(x)

∂x2
  

U1(x) =
Γ 1 

Γ α 0 + 1 + 1 
 3

∂2

∂x2
  

4

kπ

∞

k=1

 −1 k+1sin  
kπx

2
    

U1(x) =
3

Γ α + 1 
 −πsin  

πx

2
 − 3πsin  

3πx

2
 − 5πsin  

5πx

2
 − 7πsin  

7πx

2
   

for k = 1 

  

U1+1(x) =
Γ 1 × α + 1 

Γ α 1 + 1 + 1 
 3

∂2U1(x)

∂x2
  

U2(x) =
Γ 1 

Γ α 1 + 1 + 1 
 3

∂2

∂x2
 

3

Γ α + 1 
 −πsin  

πx

2
 − 3πsin  

3πx

2
 − 5πsin  

5πx

2
 − 7πsin  

7πx

2
     

U2(x) =
9

4Γ 2α + 1 
 π3sin  

πx

2
 + 27π3sin  

3πx

2
 + 125π3sin  

5πx

2
 + 343π3sin  

7πx

2
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Then, using the inverse transformation rule in equation (7), the approximate solution of u x, t  is obtained by 

u x, t =   Uk(x)tkα 

10

k=0

,      k = 0,  1,  2,  3,  4  and α = 0.2,0.5,0.7 and 1             (18 ) 

u x, t = U0(x) + U1(x)tα + U2(x)t2α + ⋯ 

u x, t =  
4

π
sin  

πx

2
 +

4

3π
sin  

3πx

2
 +

4

5π
πsin  

5πx

2
 +

4

7π
πsin  

7πx

2
 +

3

Γ α + 1 
  −πsin  

πx

2
 

− 3πsin  
3πx

2
 − 5πsin  

5πx

2
 − 7πsin  

7πx

2
  tα 

+
9

4Γ 2α + 1 
 π3sin  

πx

2
 + 27π3sin  

3πx

2
 + 125π3sin  

5πx

2
 + 343π3sin  

7πx

2
  t2α + ⋯ 

 

The Fractional Variational Iteration correction functional for equation (10) is constructed as  

uk+1 x, t = uk(x) +
1

Γ α + 1 
 λ τ  

∂αuk x, τ 

∂τ2
− 3

∂2uk  x, τ 

∂x2 
 (dτ)α , 0 < α ≤ 1 (19)

t

0

 

where λ τ = −1 is the Lagrange multiplier.

 

Problem 2: Consider the time-fractional 2-dimensional heat equation. 

∂αu

∂tα
=

∂2u

∂x2
+

∂2u

∂y2
, 0 < 𝛼 ≤ 1,   0 < 𝑥 < 𝜋, 𝑎𝑛𝑑 0 < 𝑦 < 𝜋, 𝑡 > 0                (20) 

 

Subject to the initial condition and boundary condition 

u x, y, 0 = sin x sin y                                        (21a) 

u 0, y, t =  u π, y, t = u x, 0, t = u x, π, t = 0     (21b) 

 

With the exact solution is given as 

u x, y, t = Eα(−2tα) sin x sin y         (22) 

 

where Eα t  is One-parameter Mittag-Leffler function [25] defined as 

Eα t =  
tα

Γ kα + 1 

∞

k=0

                            (23) 

 

Implementation of Fractional Reduced Differential Transform Method (FRDTM) on problem 2 

In this section, weapply the Fractional Reduced Differential Transform operator FRDT on both sides of equation  

(20) and ( 21a)  

By using Theorem 4 and 5, equation (20) is transformed to 

Uk+1(x, y) =
Γ kα + 1 

Γ α k + 1 + 1 
 
∂2Uk x, y 

∂x2
+

∂2Uk x, y 

∂y2
            (24) 

 

The initial condition in equation (21𝑎) can be transformed by using equation (9) to obtain 

U0  = sin x sin y                            (25) 

 

Using equation (24) in (25), we obtained the following Uk x, y  values successively for k = 0,1,2,3,4, …,

for k = 0

  Ogunfiditimi & Akogwu (2025). Application of the Fractional Reduced Differential Transform Method … 

 



141 

U0+1(x,y) =  
Γ(0×α+1)

Γ α 0+1 +1 
 
∂2U0(x,y)

∂x2 +
∂2U0(x,y)

∂y2   

 

U1(x,y) = 
Γ 1 

Γ α 0 + 1 + 1 
 

∂2

∂x2
 sin x sin y  +

∂2

∂y2
 sin x sin y    

U1(x,t) = −
2sin x sin y 

Γ α + 1 
 

for k = 1 

  

U1+1(x, y) =
Γ 1 × α + 1 

Γ α 1 + 1 + 1 
 
∂2U1(x, y)

∂x2
+

∂2U1(x, y)

∂y2
  

U1+1(x, y) =
Γ 1 × α + 1 

Γ α 1 + 1 + 1 
 

∂2

∂x2
 
−2sin x sin y 

Γ α + 1 
 +

∂2

∂y2
 
−2sin x sin y 

Γ α + 1 
   

U2(x, y) =
Γ α + 1 

Γ 2α + 1 
 

1

Γ α + 1 
 4sin x sin y    

U2(x, y) =
4sin x sin y 

Γ 2α + 1 
 

for k = 2 

  

U1+2(x, y) =
Γ 1 × α + 1 

Γ α 1 + 1 + 1 
 
∂2U2(x, y)

∂x2
+

∂2U2(x, y)

∂y2
  

U2+1(x, y) =
Γ 2 × α + 1 

Γ α 2 + 1 + 1 
 

∂2

∂x2
 4sin x sin y  +

∂2

∂y2
 4sin x sin y    

U3(x, y,t) = 
Γ 2α + 1 

Γ 3α + 1 
 

1

Γ 2α + 1 
 4sin x sin y    

U3 x, y = −
8sin x sin y 

Γ 3α + 1 
 

⋮ 
Then, using the inverse transformation rule in equation(7), the approximate solution of  u x, y, t  is obtained by 

u x, y, t =   Uk x, y tkα 

10

k=0

,  k = 0,  1,  2,  3,  4 and α = 0.5, 0.7 and 1 (26 ) 

u x, y,t = U0(x,y) + U1(x,y)tα + U2(x,y)t2α + U3(x,y)t3α …

u x, y, t = sin x sin y −
2sin x sin y 

Γ α + 1 
tα +

4sin x sin y 

Γ 2α + 1 
t2α + −

8sin x sin y 

Γ 3α + 1 
t3α + ⋯ 

 

The Fractional Variational Iteration (FVIM) correction functional for equation (20) is constructed as  

uk+1 x, y, t = uk(x, y) +
1

Γ α+1 
 λ τ  

∂α u x,y,τ 

∂τα
−

∂2u x,y,τ 

∂x2 +
∂2u x,y,τ 

∂y2  (dτ)
t                                                                                                            α

0 
 (27)

where λ τ = −1 is the Lagrange multiplier
 

 

Results and Discussion 

In this section, the approximate solutions of the 

fractional heat equation in both one- and two-

dimensional cases are compared. 

For the one-dimensional case, approximate solutions 

were obtained for fractional ordersα = 0.2, 0.5, 0.7, and 

1.0 using the Fractional Reduced Differential 

Transform Method (FRDTM) and the Fractional 

Variational Iteration Method (FVIM). The solutions 

were computed over the time interval t ∈   0,1  at a 

fixed spatial point x = 0.3, with the integer-order case 

corresponding to α = 1.0. 

For the two-dimensional case, the heat equation was 

solved using the same numerical approaches (FRDTM 

and FVIM) for fractional orders α = 0.5, 0.7 and 1.0. 

The solutions were computed over the same time 

interval t ∈   0,1  at fixed spatial points x =
π

5
 and 

y =
π

2
. 

All computations were carried out using Maple 21. The 

FRDTM was implemented up to the tenth iteration, 

while the FVIM was applied up to the tenth term, 

yielding approximate solutions for u(x, t) and u(x, y, t). 

Table 1 show that both FRDTM and FVIM perfectly 

reproduce the classical solution of the model when the 

fractional order α = 1 at 0 < 𝑡 < 1 and 0 < 𝑥 < 2. For 

all solutions u x, t  points, the approximate solutions 

match the exact solution very well, with absolute errors 

effectively zero.  
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Table 1: Numerical results for Problem 1 (𝛂 = 𝟏. 𝟎, 𝟎 < 𝑥 < 2 and 𝐭 ∈  𝟎, 𝟏 )  

𝒙 𝒕 
𝑬𝒙𝒂𝒄𝒕 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 

𝒇𝒐𝒓 𝜶 = 𝟏 
𝑭𝑹𝑫𝑻𝑴 𝑭𝑽𝑰𝑴 

Absolute error 

𝒖 𝒙, 𝒕  𝒇𝒐𝒓 𝜶 = 𝟏 

 𝑬𝒙𝒂𝒄 − 𝑭𝑹𝑫𝑻𝑴  

Absolute error 

𝒖 𝒙, 𝒕  𝒇𝒐𝒓 𝜶 = 𝟏 

 𝑬𝒙𝒂𝒄𝒕 − 𝑭𝑽𝑰𝑴  
0 0 0 0 0 0 0 

0.1 0.05 0.06906582 0.06906582 0.06906582 0 0 

0.2 0.1 0.04770088 0.04770088 0.04770088 0 0 

0.3 0.15 0.03294501 0.03294501 0.03294501 0 0 

0.4 0.2 0.02275374 0.02275374 0.02275374 0 0 

0.5 0.25 0.01571506 0.01571506 0.01571506 0 0 

0.6 0.3 0.01085373 0.01085373 0.01085373 0 0 

0.7 0.35 0.00749622 0.00749622 0.00749622 0 0 

0.8 0.4 0.00517733 0.00517733 0.00517733 0 0 

0.9 0.45 0.00357576 0.00357576 0.00357576 0 0 

1 0.5 0.00246963 0.00246963 0.00246963 0 0 

1.1 0.55 0.00170567 0.00170567 0.00170567 0 0 

1.2 0.6 0.00117804 0.00117804 0.00117804 0 0 

1.3 0.65 0.00081362 0.00081362 0.00081362 0 0 

1.4 0.7 0.00056193 0.00056193 0.00056193 0 0 

1.5 0.75 0.0003881 0.0003881 0.0003881 0 0 

1.6 0.8 0.00026805 0.00026805 0.00026805 0 0 

1.7 0.85 0.00018513 0.00018513 0.00018513 0 0 

1.8 0.9 0.00012786 0.00012786 0.00012786 0 0 

1.9 0.95 8.83E-05 8.83E-05 8.83E-05 0 0 

2.0 1.0 6.10E-05 6.10E-05 6.10E-05 0 0 

 

 

Table 2 present the FRDTM and FVIM for α = 0.2at 

0 < 𝑡 < 1  and fixed x = 0.3. It was observed that the 

FRDTM method consistently yielded slightly higher 

solution values than FVIM, particularly at early times 

between t = 0 to 0.3. The difference diminished as time 

increased, reflecting the damping nature of the 

fractional system. Fig. 1 shows 2D surface plot of the 

result obtained by the FRDTM and the FVIM 

approximate solutions u(x, t). 

 

Table 2: Numerical results for Problem 1 (𝛂 =
𝟎. 𝟐,𝐱 = 𝟎. 𝟑and 𝐭 ∈  𝟎, 𝟏 ) 
𝐱 𝐭 𝐅𝐑𝐃𝐓𝐌 𝐅𝐕𝐈𝐌 

𝟎. 𝟑 0 0.276000000 0.264000000 

 0.05 0.131654430 0.125930324 

 0.1 0.090928217 0.086974816 

 0.15 0.062800322 0.060069873 

 0.2 0.043373560 0.041487753 

 0.25 0.029956307 0.028653859 

 0.3 0.020689570 0.019790024 

 0.35 0.014289422 0.013668143 

 0.4 0.009869107 0.009440015 

 0.45 0.006816180 0.006519824 

 0.5 0.004707651 0.004502970 

 0.55 0.003251378 0.003110014 

 0.6 0.002245591 0.002147957 

 0.65 0.001550936 0.001483504 

 0.7 0.000739810 0.000707644 

 0.75 0.000510956 0.000488740 

 0.8 0.000352896 0.000337553 

 0.85 0.00024373 0.000233133 

 0.9 0.000168334 0.000161016 

 0.95 0.000243730 0.000233133 

 1.0 0.131654430 0.125930324 

 

 
Figure 1: 2D surface plot comparing FRDTM and 

the FVIM approximate solutions 𝐮(𝐱, 𝐭) for 𝛂 = 𝟎. 𝟐 

at 𝟎 < 𝒕 ≤ 𝟏,  𝒂𝒏𝒅  𝒙 = 𝟎. 𝟑 
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Table 3: Numerical results for Problem 1 (𝛂 = 𝟎. 𝟓, 

𝐱 = 𝟎. 𝟑 and 𝐭 ∈  𝟎, 𝟏 ). 
.𝐱 𝐭 𝐅𝐑𝐃𝐓𝐌 𝐅𝐕𝐈𝐌 

𝟎. 𝟑 0.0 0.277500000 0.015000000 

 0.05 0.191657662 0.010359874 

 0.1 0.132369943 0.007155132 

 0.15 0.091422392 0.004941751 

 0.2 0.043609286 0.002357259 

 0.25 0.030119113 0.00162806 

 0.3 0.020802013 0.001124433 

 0.35 0.014367082 0.000776599 

 0.4 0.009922744 0.000536365 

 0.45 0.004733236 0.000255851 

 0.5 0.003269048 0.000176705 

 0.55 0.001559365 8.43E-05 

 0.6 0.000743831 4.02E-05 

 0.65 0.000513733 2.78E-05 

 0.7 0.000354814 1.92E-05 

 0.75 0.000245055 1.32E-05 

 0.8 0.000169249 9.15E-06 

 0.85 0.000121468 0.000118271 

. 0.9 8.39E-05 8.17E-05 

 0.95 5.79E-05 5.64E-05 

 1 0.906317 0.882466 

 

 

 
Figure 2: 2D surface plot comparing FRDTM and 

the FVIM approximate solutions𝐮(𝐱, 𝐭) for 𝛂 = 𝟎. 𝟓 

at 𝟎 < 𝒕 ≤ 𝟏 𝒂𝒏𝒅  𝒙 = 𝟎. 𝟑. 

 

Table 3 shows the results of FRDTM and FVIM 

forα = 0.5, at 0 < 𝑡 < 1 and fixed x = 0.3, the 

numerical results reveal a significant discrepancy 

between FRDTM and FVIM, particularly in the early-

time region. The FRDTM method begins with a much 

higher and more physically realistic value, whereas 

FVIM substantially underestimates the solution. As 

time increases, the two methods converge, with 

differences, dropping to negligible levels. Fig. 2 shows 

the 2D surface plot comparison between the FRDTM 

and FVIM solutions of u(x, t). 

Table 4 and Fig. 3 presents the result obtained by the 

FRDTM and the FVIM approximate solutions u(x, t) 

for α = 0.7 at fixed x = 0.3 and 0 < 𝑡 < 1. It was 

observed that both FRDTM and FVIM produce 

increasing solutions at x = 0.3 over time. The FRDTM 

results are consistently higher than those from FVIM 

across the entire time domain. While the difference is 

small at early times, it grows steadily, reaching a 

maximum absolute difference of approximately 

0.023851 att = 1.0. This trend indicates that FVIM 

underestimates the solution and is less effective at 

tracking the growth behavior inherent in fractional 

systems atα = 0.7.  

 

Table 4: Numerical results for Problem 1 (𝛂 =
𝟎. 𝟕,𝐱 = 𝟎. 𝟑and 𝐭 ∈  𝟎, 𝟏 ) 
𝐱 𝐭 𝐅𝐑𝐃𝐓𝐌 𝐅𝐕𝐈𝐌 

0.3 0 0 0 

 0.05 0.045316 0.044123 

 0.1 0.090632 0.088247 

 0.15 0.135948 0.132370 

 0.2 0.181263 0.176493 

 0.25 0.226579 0.220617 

 0.3 0.271895 0.264740 

 0.35 0.317211 0.308863 

 0.4 0.362527 0.352987 

 0.45 0.407843 0.397110 

 0.5 0.453158 0.441233 

 0.55 0.498474 0.485356 

 0.6 0.54379 0.529480 

 0.65 0.589106 0.573603 

 0.7 0.634422 0.617726 

 0.75 0.679738 0.661850 

 0.8 0.725053 0.705973 

 0.85 0.770369 0.750096 

. 0.9 0.815685 0.794220 

 0.95 0.861001 0.838343 

 1.0 0.906317 0.882466 

 

 
Figure 3: 2D surface plot comparing FRDTM and 

the FVIM approximate solutions 𝐮(𝐱, 𝐭) for 𝛂 = 𝟎. 𝟕 

at 𝟎 < 𝑡 ≤ 1 𝑎𝑛𝑑  𝑥 = 0.3. 
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Table 5: Numerical results for Problem 2 (𝛂 = 𝟏. 𝟎,𝐭 ∈  𝟎, 𝟏  a fixed 𝐱 =
𝛑

𝟓
 and 𝐲 =

𝛑

𝟐
 )  

t 
Exact Solution 

for 𝜶 = 𝟏 
FRDTM 

for 𝜶 = 𝟏 
FVIM 

for 𝜶 = 𝟏 
Absolute error 𝒖 𝒙, 𝒚, 𝒕  

 𝑬𝒙𝒂𝒄 − 𝑭𝑹𝑫𝑻𝑴  
Absolute error 𝒖 𝒙𝒚, , 𝒕  

 𝑬𝒙𝒂𝒄𝒕 − 𝑭𝑽𝑰𝑴  

0 0.7071067811866 0.7071067811866 0.7071067811866 0 0 

0.1 0.5789300674675 0.5789300674675 0.5789300674675 0 0 

0.2 0.4739878501174 0.4739878501179 0.4739878501171 3.00E-13 8.00E-13 

0.3 0.3880684295370 0.3880684295374 0.3880684294762 6.08E-11 6.12E-11 

0.4 0.3177235589369 0.3177235589370 0.3177235575109 1.43E-09 1.43E-09 

0.5 0.2601300638545 0.2601300638559 0.2601300475115 1.63E-08 1.63E-08 

0.6 0.2129765892745 0.2129765892743 0.2129764696973 1.20E-07 1.20E-07 

0.7 0.1743710272812 0.1743710272810 0.1743703854230 6.42E-07 6.42E-07 

0.8 0.1427651436882 0.1427651436889 0.1427623969720 2.75E-06 2.75E-06 

0.9 0.1168938512261 0.1168938512264 0.1168839647840 9.89E-06 9.89E-06 

1.0 0.0957275423705 0.0957275423704 0.0956964965107 3.10E-05 3.10E-05 

 

 

Table 5 and Fig. 4 demonstrate that both 

approximations accurately match the exact solution at 

t = 0for fractional order α = 1and fixed x =
π

5
, y =

π

2
. 

As time increases, a slight increase in error, ranging 

from 10−11  to 10−7 was observed at t ≤ 0.3. 

Additionally, the errors increase more dramatically 

aftert = 0.7, reaching 10−6 at t = 0.9 and 10−5at 

t = 1.0. Despite this increase, both methods remain 

stable and closely aligned, even as the magnitude of the 

solution grows. The plot also shows that the FRDTM 

and FVIM result are most identical across all time 

steps. 

 

 
Figure 4: 2D surface plotsof the absolute errors for 

FRDTM and the FVIM approximate solutions 

𝐮(𝐱, 𝐲, 𝐭)with𝛂 = 𝟏. 𝟎,𝐭 ∈  𝟎, 𝟏  at fixed 𝐱 =
𝛑

𝟓
 and 

𝐲 =
𝛑

𝟐
 

 

 

Table 6: Numerical results for problem 2 ( 𝛂 = 𝟎. 𝟓, 

𝐭 ∈  𝟎, 𝟏  a fixed 𝐱 =
𝛑

𝟓
 and 𝐲 =

𝛑

𝟐
 ) 

t FRDTM FVIM 

0 0.7071067811866 0.7071067811866 

0.1 0.3914714125612 0.3914714125615 

0.2 0.3245576738027 0.3245576738033 

0.3 0.2894948326892 0.2894948326894 

0.4 0.2794438512051 0.2794438512064 

0.5 0.3083688206414 0.3083688206438 

0.6 0.4078368115125 0.4078368115145 

0.7 0.6299293473556 0.6299293473570 

0.8 1.0515197688250 1.0515197688320 

0.9 1.7790529159950 1.7790529160040 

1.0 2.9535799576180 2.9535799576280 

 

 
Figure 5: 2D surface plot comparing FRDTM and 

FVIM approximate solutions 𝐮(𝐱, 𝐲, 𝐭) for 𝛂 =

𝟎. 𝟓, 𝐭 ∈  𝟎, 𝟏 at fixed 𝐱 =
𝛑

𝟓
 and 𝐲 =

𝛑

𝟐
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The FRDTM and FVIM approximate solutions for 

= 0.5 and t ∈  0,1  evaluated at the fixed spatial points 

x =
π

5
 and y =

π

2
 are shown in Table 6, and Fig. 5 

displays the corresponding plot of the findings. The 

solution u(x, y, 0) ≈ 0.7071067811866 is obtained 

with the same values by both FRDTM and FVIM, 

suggesting that both approaches meet the initial 

condition att = 0. The solution u(x, y, t) first falls as 

time goes from t = 0 to t = 1.0, reaching a minimum 

0.2794438512051 at t = 0.4, before starting to rise 

quickly from t = 0.5 to t = 1.0. As it is common with 

many fractional-order systems, this pattern points to a 

nonlinear time-dependent behavior of the solution. 

Furthermore, the plot demonstrates how closely the 

numerical values generated by the two approximations 

matches. 

For α = 0.7 and t ∈  0,1  at a fixed spatial point x =
π

5
 

and y =
π

2
, it was observed in Table 7 and Fig. 6 that the 

FRDTM and the FVIM solution start correctly at 

approximately u x, y, 0 ≈ 0.7071067811866, which 

matches the exact initial condition. The differences 

between FRDTM and FVIM are on the order of 10−13  

to10−12 , which is within machine precision, making 

them practically equivalent. As time increases, both 

approximate solutions then decrease smoothly from 

0.4700471995218 at t = 0.1 to 0.1978999540998 

at t = 0.9 and then start to increase rapidly at t = 1.0.  

 

Table 7: Numerical results for problem 2 ( 𝛂 = 𝟎. 𝟕, 

𝐭 ∈  𝟎, 𝟏  a fixed 𝐱 =
𝛑

𝟓
 and 𝐲 =

𝛑

𝟐
 ) 

t FRDTM FVIM 

0 0.7071067811866 0.7071067811866 

0.1 0.4700471995218 0.4700471995225 

0.2 0.3751665923260 0.3751665923264 

0.3 0.3146103905760 0.3146103905760 

0.4 0.2716624136508 0.2716624136511 

0.5 0.2395301859173 0.2395301859170 

0.6 0.2150033723052 0.2150033723066 

0.7 0.1968903796777 0.1968903796781 

0.8 0.1857532127087 0.1857532127090 

0.9 0.1842483829923 0.1842483829922 

1.0 0.1978999540998 0.1978999541006 

 

 
Figure 6: 2D surface plot comparing FRDTM and 

FVIM approximate solutions 𝐮(𝐱, 𝐲, 𝐭) for 𝛂 =

𝟎. 𝟕, 𝐭 ∈  𝟎, 𝟏  at fixed 𝐱 =
𝛑

𝟓
 and 𝐲 =

𝛑

𝟐
 

Table 8: Numerical results for Problem 2 (𝛂 = 𝟎. 𝟓, 

𝐭 ∈  𝟎, 𝟏  a fixed 𝐱 =
𝟐𝛑

𝟓
 and 𝐲 =

𝟒𝛑

𝟐
)  

t FRDTM FVIM 

0 0.5590169943748 0.5590169943748 

0.1 0.3094853256341 0.3094853256344 

0.2 0.2565853703255 0.2565853703260 

0.3 0.2288657605368 0.2288657605369 

0.4 0.2209197619843 0.2209197619853 

0.5 0.2437869581516 0.2437869581535 

0.6 0.3224233095100 0.3224233095115 

0.7 0.4980028756566 0.4980028756577 

0.8 0.8312993685451 0.8312993685501 

0.9 1.4064648231260 1.4064648231340 

1.0 2.3350099793730 2.3350099793810 

 

 

 
Figure 7: 2D surface plot comparing FRDTM and 

FVIM approximate solutions 𝐮(𝐱, 𝐲, 𝐭) for 𝛂 =

𝟎. 𝟓, 𝐭 ∈  𝟎, 𝟏  at fixed 𝐱 =
𝟐𝛑

𝟓
 and 𝐲 =

𝟒𝛑

𝟓
 

 

 

As seen from Table 8 and Fig. 7 for α = 0.5 at t ∈

 0,1 , and fixed x =
2π

5
 and y =

4π

5
, both approaches 

begin with the same value, 

u x, y, 0 = 0.5590169943748, at t = 0, which is in 

consistent with the initial condition. Early on, the 

FRDTM and FVIM solutions exhibit a smooth decay 

from 0.3094853256341, 0.3094853256344 at t = 0.1 to 

0.2437869581516, 0.2437869581535 at t = 0.5. At 

t = 0.6 and t = 0.7, both approximate solutions then 

rise with time. Additionally, aftert = 0.8, the 

approximate solutions for both methods increase more 

sharply, reaching 1.40646482312600, 1.406464823134 

at t = 0.9 and 2.3350099793730, 2.3350099793810 at 

t = 1.0. 
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Table 9: Numerical results for problem 2 (𝛂 = 𝟎. 𝟕, 

𝐭 ∈  𝟎, 𝟏  a fixed 𝐱 =
𝟐𝛑

𝟓
 and 𝐲 =

𝟒𝛑

𝟐
) 

t FRDTM FVIM 

0 0.5590169943748 0.5590169943748 

0.1 0.3716049395680 0.3716049395686 

0.2 0.2965952334384 0.2965952334387 

0.3 0.2487213524438 0.2487213524438 

0.4 0.2147679954488 0.2147679954490 

0.5 0.1893652389655 0.1893652389652 

0.6 0.1699750902754 0.1699750902764 

0.7 0.1556555122892 0.1556555122895 

0.8 0.1468508087133 0.1468508087135 

0.9 0.1456611363646 0.1456611363646 

1.0 0.1564536509495 0.1564536509501 

 

 

 
Figure 8: 2D surface plot comparing FRDTM and 

FVIM approximate solutions 𝐮(𝐱, 𝐲, 𝐭)𝛂 = 𝟎. 𝟕, 𝐭 ∈

 𝟎, 𝟏  at fixed 𝐱 =
𝟐𝛑

𝟓
 and 𝐲 =

𝟒𝛑

𝟓
 

 

 

Table 9 and Fig. 8 demonstrate that the FRDTM and 

FVIM solutions yielded the same value, u x, y, 0 =
 0.5590169943748 for α = 0.7 at t ∈  0,1  and fixed 

x =
2π

5
 andy =

4π

5
. This indicates that both approaches 

meet the initial condition. From 0.3716049395680, 

0.3716049395686 at t = 0.1 to 0.1456611363646, 

at t = 0.9, both approximations decrease steadily and 

smoothly before starting to rise quickly att = 1.0. 

 

Conclusion 

In this work, the Fractional Reduced Differential 

Transform Method (FRDTM) was applied to solve 

fractional partial differential equations, including one- 

and two-dimensional fractional heat equations. To 

verify its reliability, the Fractional Variational Iteration 

Method (FVIM) was also implemented for the same 

problems. Numerical comparisons between FRDTM, 

FVIM, and the exact solutions (α = 1) demonstrate that 

FRDTM achieves higher accuracy with fewer 

computational steps for fractional orders α = 0.2, 0.5, 
and  0.7. The results further indicate that, although 

FVIM is useful for validation, its convergence can be 

slower in certain cases compared to FRDTM. 

Error analysis confirms that FRDTM consistently 

produces smaller absolute errors than FVIM. Overall, 

this study establishes FRDTM as a reliable, efficient, 

and powerful technique for solving fractional partial 

differential equations, with FVIM serving as a suitable 

validation method. The findings support the broader 

application of fractional calculus in modeling complex 

heat phenomena and provide a foundation for future 

research on numerical methods for fractional PDEs. 
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