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In this paper, the nonlinear partial differential equation, Buckmaster 

equation is solved using the exponential cubic B-spline collocation method 

(ECBSM) and the approximate solutions from this method are compared 

with those of the hybrid cubic B-spline collocation method (HCBSM). In 

order to solve the equation, linearization technique is needed to linearize the 

nonlinear terms of the equation. This is done by the Taylor’s expansion 

approach. Further, the linearized equation is discretized into the fully 

implicit scheme and the Crank-Nicolson scheme. Three examples are used 

to test the proposed schemes by the fully implicit and Crank-Nicolson 

methods. The absolute errors of the methods are calculated and the 

comparison between the results of the ECBSM and the HCBSM is carried 

out. This is to analyze the accuracy of the methods of approximation. Both 

the ECBSM and HCBSM possess a free parameter which aids in 

determining accurate results. In general, the methods proved reliable with 

accuracy in approximating solutions of the equation. 

Keywords: 
Buckmaster equation, collocation method, exponential cubic  

B-splines, partial differential equations, splines 

 

 

Introduction 

The importance of partial differential equations (PDEs) 

cannot be set aside as these types of equations find 

applications in physical, biological and chemical 

phenomena. In recent times, they have found many 

applications in areas like image processing, economics 

and financial forecasting etc [1]. 

Buckmaster equation is a PDE of second order which is 

nonlinear with two nonlinear terms. It is also a 

parabolic PDE and basically a one-dimensional type of 

heat equation which has application in the field of fluid 

dynamics. It is used to model the thin viscous fluid 

sheet flow and can also be represented as a two-

dimensional heat equation [2]. The general form of the 

Buckmaster equation is given by  

𝑢𝑡 =  𝑢4 𝑥𝑥 +  𝑢3 𝑥  ,      𝑟 < 𝑥 < 𝑠, 0 ≤ 𝑡 ≤ 𝑇    (1) 

with boundary conditions  

𝑢 𝑟, 𝑡 = 𝜑1 𝑡 ,   0 ≤ 𝑡 ≤ 𝑇       (2a) 

𝑢 𝑠, 𝑡 = 𝜑2 𝑡 ,      0 ≤ 𝑡 ≤ 𝑇       (2b) 

 

and initial condition 

 𝑢 𝑥, 0 = 𝛼 𝑥 ,      𝑟 < 𝑥 < 𝑠.              (3) 

The Buckmaster equation has also found application in 

image processing in the biomedical sciences where it is 

in combination with the Airy equation to form the 

Buckmaster-Airy filter. This filter is then used for 

extracting vessels from digital biomedical images [3]. 

On the other hand, the historical development and use 

of spline functions to solve differential equations is 

traced back to the year, 1968 [4]. Bickley began the 

investigation on splines by applying the cubic spline to 

solve two-point boundary value problems involving a 

linear ordinary differential equation (ODE). The 

principle behind this method is that a spline function 

can be arbitrarily defined on a certain domain [5]. 

Successive works further improved, modified and 

generalized on it. For example, Fyfe [6], solved linear 

boundary value problems of second order using cubic 

splines and investigated a great deal of research 

questions of interest such as the effect of non-uniform 

spacing, deferred corrections and a net refinement 

procedure. Albasiny and Hoskins [7] also solved linear 

equations of second order using cubic splines and 

considered a special case with fourth-order accuracy of 

results to show the identity with difference schemes. 

Other works that were further carried out on the 

application of splines to solve different kinds of 

problems included the researches of Caglar et al. [8], 

Dehghan and Lakestani [9], Abd Hamid et al. [10], Abd 

Hamid et al. [11] and Khan et al. [12]. 

Amongst these splines are the exponential spline 

functions which have also gained unprecedented 

acceptance in solving differential equations. Although, 

these splines were first used in 1981 [13], they were 
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neglected in the years after. McCartin [14] submitted 

that the exponential splines are a generalization of the 

semi-classical cubic spline in which the presence of 

certain tension parameters provides for the adjustment 

of the tautness of individual spline segments and that 

the lack of a suitable scheme of tension parameter was 

the reason for the lack of application of the functions. 

This hitch was removed by the establishment of a well-

founded algorithm thereby giving room to the 

widespread application of the exponential splines in a 

variety of data fitting and geometric problems in 

computational fluid dynamics [15].  

As a result, Ersoy and Dag [16–18] solved the 

Korteweg-de Vries equation, Reaction-Diffusion 

equation and Kuramoto-Sivashinsky equation using the 

ECBSM, Zhu et al. [19] presented a collocation method 

for the fractional sub-diffusion equation based on the 

exponential B-spline basis function and Singh et al. 

[20] proposed an ECBSM for the numerical solution of 

second-order. Most recently, Shukla &Tamsir [21] 

proposed an algorithm for solving the multi-

dimensional convection-diffusion equations based on 

the exponential cubic B-spline. This algorithm is a 

quadrature method with a modification and is used to 

approximate the 2D and 3D convection-diffusion 

equation. The method yielded better results than the 

results of most methods in literature. Additionally, the 

method is economically viable in terms of 

computational cost and it is simple to implement. 

Just in the recent years, the Buckmaster equation had 

been given attention and as a consequence, a few works 

have been done on it. As a nonlinear PDE, it has been 

solved by some analytical and numerical methods such 

as the Finite Volume Method (FVM) [22], the q-

Homotopy Analysis Method (q-HAM) [23], Cubic B-

spline Interpolation Method (CBSM) and Cubic 

Trigonometric B-spline Interpolation Method (CTBSM) 

[24] etc. The numerical solutions of the Buckmaster 

equation proffered using the collocation method based 

on the cubic B-splines and trigonometric cubic B-spline 

functions [24] caught our interest. The results of the 

method for some problems considered were compared 

with analytical solutions and those of FDM. The study 

concluded that the schemes are capable and generate 

results that are of better accuracy than the FDM.  

These findings have encouraged us to choose no other 

numerical method to make comparison with but the 

HCBSM. 

 

Materials and Methods 

Splines 

Splines are commonly considered as piecewise 

functions. These functions, most especially, the B-

splines have found applications in geometric 

representation, computer-aided design, computer 

graphics and several other fields [25]. In this work, the 

Exponential cubic B-spline is considered and used in 

the collocation method to solve the Buckmaster 

Equation as an interpolating function for the space 

derivatives. 

Exponential cubic B-spline function 

The exponential spline is defined in similitude with the 

theory of cubic splines to a beam in which a tension 

parameter 𝑝 is added to the differential equation 

governing the system [13]. Given an interval [𝑟, 𝑠] that 

is assumed to be uniformly divided into 𝑁 subintervals 

 𝑥𝑗 , 𝑥𝑗 +1 , (𝑗 = 0,1,2, … , 𝑁 − 1), i.e., 𝑟 = 𝑥0 < 𝑥1 <

𝑥2 < ⋯ < 𝑥𝑁 = 𝑠. The exponential cubic B-spline, 

𝐵 3,𝑗 (𝑥) with knots at the grid points 𝑥𝑗 = 𝑟 + 𝑗ℎ, where 

𝑗 = 0,1,2, … , 𝑁) and ℎ = (𝑠 − 𝑟)/𝑁 together with 

fictitious knots 𝑥−3 , 𝑥−2, 𝑥−1, 𝑥𝑁+1 , 𝑥𝑁+2, 𝑥𝑁+3 outside 

the problem domain  𝑟, 𝑠  can be defined as [18, 21]; 

 

 

𝐵 3,𝑗 (𝑥) =

 
 
 
 
 

 
 
 
 𝑏2   𝑥𝑗−2 − 𝑥 −

1

𝑝
 sinh  𝑝 𝑥𝑗−2 − 𝑥    ,                                     [𝑥𝑗−2 , 𝑥𝑗−1)

𝑎1 + 𝑏1 𝑥𝑗 − 𝑥 + 𝑐1 exp  𝑝 𝑥𝑗 − 𝑥  + 𝑑1 exp  −𝑝 𝑥𝑗 − 𝑥  ,   [𝑥𝑗−1, 𝑥𝑗 ) 

𝑎1 + 𝑏1 𝑥 − 𝑥𝑗  + 𝑐1 exp  𝑝 𝑥 − 𝑥𝑗   + 𝑑1 exp  −𝑝 𝑥 − 𝑥𝑗   , [𝑥𝑗 , 𝑥𝑗+1)

𝑏2   𝑥 − 𝑥𝑗 +2 −
1

𝑝
 sinh  𝑝 𝑥 − 𝑥𝑗+2    ,                                     [𝑥𝑗 +1 , 𝑥𝑗+2)

0,                                                                                                        otherwise

      (4) 

where, 𝑎1 =
𝑝ℎ𝑐

𝑝ℎ𝑐−𝑠
,   𝑏1 =

𝑝

2
 

𝑐 𝑐−1 +𝑠2

 𝑝ℎ𝑐−𝑠 (1−𝑐)
 ,   𝑏2 =

𝑝

2(𝑝ℎ𝑐−𝑠)
, 

𝑐1 =
1

4
 
exp −𝑝ℎ  1 − 𝑐 + 𝑠(exp −𝑝ℎ − 1)

 𝑝ℎ𝑐 − 𝑠 (1 − 𝑐)
  

𝑑1 =
1

4
 
exp 𝑝ℎ  𝑐 − 1 + 𝑠(exp 𝑝ℎ − 1)

 𝑝ℎ𝑐 − 𝑠 (1 − 𝑐)
  

and 𝑐 = cosh(𝑝ℎ) , 𝑠 = sinh(𝑝ℎ), 𝑝 is a free parameter. 

 

Linearization 

The linearization process entails converting the 

nonlinear terms of the Buckmaster equation to linear 

terms. This process is achieved by the use of Taylor’s 

expansion. This process is crucial in the implementation 

of the implicit schemes, namely, the Crank-Nicolson 

scheme and fully implicit scheme adopted in this work. 

  Yusuf et al. (2025). Approximate Solution of the Nonlinear Buckmaster Partial Differential Equation… 
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The nonlinear terms of the Buckmaster Equation 

are 𝑢4 𝑥𝑥  and  𝑢3 𝑥 , and their respective linearization 

are given below as; 
  𝑢4 𝑥𝑥  𝑗

𝑘+1 ≈ 4  𝑢3 𝑥𝑥  𝑗
𝑘 𝑢𝑥𝑥  𝑗

𝑘+1 − 3  𝑢4 𝑥𝑥  𝑗
𝑘       (5) 

  𝑢3 𝑥 𝑗
𝑘+1 ≈ 3  𝑢2 𝑥 𝑗

𝑘 𝑢𝑥 𝑗
𝑘+1 − 2  𝑢3 𝑥 𝑗

𝑘          (6) 

 

Temporal discretization 

The discretization carried out in this work is called the 

temporal discretization as it is done by the use of 

forward difference approximation on the time 

derivatives only. We have the 𝜃 −weighted scheme for 

the Buckmaster equation given as below [24]; 

 𝑢𝑡 𝑗
𝑘 = 𝜃𝔓𝑗

𝑘+1 + (1 − 𝜃)𝔓𝑗
𝑘  (7) 

where, 𝔓𝑗
𝑘 =   𝑢4 𝑥𝑥  𝑗

𝑘 +   𝑢3 𝑥 𝑗
𝑘 +  ℎ(𝑥, 𝑡) 𝑗

𝑘

Substituting Equations (5) and (6) as well as the

forward difference approximation for the time

difference term into Equation (7) and simplifying

further, we have;

 

Lastly, by the use of chain rule, Equation (8) is

expanded to give;

In this work, we consider the fully implicit scheme 

where 𝜃 = 1 and the Crank-Nicolson scheme where 

𝜃 = 0.5. 

Exponential B-spline collocation method 

In developing the collocation method using the 

exponential cubic B-spline basis function, an 

approximate solution to the analytical solution is sought 

as; 

𝑢𝑁 𝑥, 𝑡 =  𝜎𝑗 (𝑡)𝐵 3,𝑗 (𝑥)𝑁+1
𝑗 =−1   (10) 

Where 𝜎𝑗 (𝑡) are the time-dependent unknowns to be 

determined and the 𝐵 3,𝑗 (𝑥) are cubic exponential B-

spline basis functions of degree 3, order 4 defined in 

(4). 

The approximate solution (10) and its derivatives with 

respect to 𝑥 at the knot points (𝑥𝑗 , 𝑡𝑛) are given as 

follows; 

 𝑢 𝑗
𝑘 = 𝑢 𝑥𝑗 , 𝑡𝑘 = 𝜆1𝜎𝑗−1

𝑘 + 𝜎𝑗
𝑘 + 𝜆1𝜎𝑗 +1

𝑘          (11) 

 𝑢𝑥 𝑗
𝑘 = 𝑢′ 𝑥𝑗 , 𝑡𝑘 = 𝜆2𝜎𝑗−1

𝑘 + 𝜆3𝜎𝑗 +1
𝑘          (12) 

 𝑢𝑥𝑥  𝑗
𝑘 = 𝑢′′ 𝑥𝑗 , 𝑡𝑘 = 𝜆4𝜎𝑗−1

𝑘 + 𝜆5𝜎𝑗
𝑘 + 𝜆4𝜎𝑗 +1

𝑘    (13) 

where, 𝜆1 =
𝑠−𝑝ℎ

2(𝑝ℎ𝑐−𝑠)
,   𝜆2 =

𝑝(1−𝑐)

2(𝑝ℎ𝑐−𝑠)
,  𝜆3 =

𝑝(𝑐−1)

2(𝑝ℎ𝑐−𝑠)
,   

𝜆4 =
𝑝2𝑠

𝑝ℎ𝑐−𝑠
, 𝜆5 = −2𝜆4 

and 𝑐 = cosh(𝑝ℎ) , 𝑠 = sinh(𝑝ℎ), 𝑝 is a free parameter. 

Now, we consider (9) and simplify it further letting 

𝜇 = 𝑢𝑗
𝑘 , 𝜌 =  𝑢𝑥 𝑗

𝑘  and 𝜏 =  𝑢𝑥𝑥  𝑗
𝑘  to have; 

𝑢𝑗
𝑘+1 +  𝑢𝑥 𝑗

𝑘+1 −𝜃𝐵1 +  𝑢𝑥𝑥  𝑗
𝑘+1 −𝜃𝐵2 −

𝜃∆𝑡ℎ 𝑥, 𝑡 𝑗
𝑘+1 = 𝑢𝑗

𝑘 +  𝑢𝑥 𝑗
𝑘 −𝜃𝐵3 +  1 − 𝜃 ∆𝑡𝐵4 +

 𝑢𝑥𝑥  𝑗
𝑘 −𝜃𝐵5 +  1 − 𝜃 𝐵6 +  1 − 𝜃 ∆𝑡ℎ 𝑥, 𝑡 𝑗

𝑘    (14) 

Where: 𝐵1 = 6∆𝑡𝜇𝜌, 𝐵2 = ∆𝑡 24𝜇𝜌2 + 12𝜇2𝜏 , 

𝐵3 = ∆𝑡 36𝜇2𝜌 + 6𝜇2 ,  

𝐵4 = ∆𝑡 12𝜇2𝜌 + 3𝜇2 , 𝐵5 = 12∆𝑡𝜇3, 𝐵6 = 4∆𝑡𝜇3 

 

Equations (11), (12) and (13) are then substituted into 

(14) which yields a 𝑛 + 1  linear system with 𝑛 +
3unknowns and the system is condensed and written in 

the matrix form; 

𝑃𝐶𝑛+1 = 𝑄𝐶𝑛 + 𝐻  (15) 

 

In order to obtain a unique solution, the boundary 

conditions (2a) and (2b) are approximated as; 

𝑢0
𝑘+1 = 𝜆1𝜎−1

𝑘+1 + 𝜎0
𝑘+1 + 𝜆1𝜎1

𝑘+1 = 𝜑1 𝑡𝑘+1     (16a) 

𝑢𝑁
𝑘+1 = 𝜆1𝜎𝑁−1

𝑘+1 + 𝜎𝑁
𝑘+1 + 𝜆1𝜎𝑁+1

𝑘+1 = 𝜑2 𝑡𝑘+1     (16b) 

By the use of Equation (9) with the Equations (16a) and 

(16b), a solvable system of (𝑛 + 3) linear equations 

involving(𝑛 + 3) unknowns is obtained and 

transformed into a tridiagonal matrix system with 

dimension (𝑛 + 3) × (𝑛 + 3) which is solved by the 

method of Thomas Algorithm with the aid of 

Mathematica software. 

 

Initial state 

The initial vector 𝜎0 which is needed in order to obtain 

the solution parameters is gotten by the use of the initial 

condition (3) and boundary values of the derivatives of 

the initial condition as below; 

𝑢 𝑥𝑗 , 0 = 𝛼 𝑥𝑗  ,    𝑗 = 0,1,2, … , 𝑁, (17a) 

𝑢𝑥 𝑥0 , 0 = 𝛼 ′ 𝑥0 ,   for 𝑗 = 0  (17b) 

and;  

𝑢𝑥 𝑥𝑁 , 0 = 𝛼 ′ 𝑥𝑁 ,     for 𝑗 = 𝑁  (17c) 

Hence, a tridiagonal matrix system of (𝑛 + 3) × (𝑛 +
3) dimension is formed from the above operation as 

thus; 

𝐸𝛼0 = 𝐺    (18) 

The matrix 𝛼0 is generated by solving (18). 

 

Results and Discussion 

This section reveals the numerical solutions of the 

nonlinear Buckmaster equation by the ECBSM in 

comparison with the results generated by the HCBSM. 

To test the efficiency and accuracy of the ECBSM, 

three problems involving the Buckmaster equation have 

been examined. The above two methods considered in 

this work are tested on these problems using the fully 

implicit scheme with 𝜃 −value as 1 and the Crank-

Nicolson scheme with 𝜃 −value as 0.5. 

Problem 1 

Consider the following nonlinear parabolic IBVP, 

𝑢𝑡 𝑥, 𝑡 −  𝑢4 𝑥𝑥  𝑥, 𝑡 −  𝑢3 𝑥 𝑥, 𝑡 
= −12𝑥2𝑐𝑜𝑠4  𝑡 − 3𝑥2𝑐𝑜𝑠3  𝑡
− 𝑥 sin 𝑡 ,   𝑥 ∈  0,1 , 𝑡 ∈ ℝ+ 

subject to the boundary conditions, 

𝑢 0, 𝑡 = 0,      𝑢 1, 𝑡 = cos 𝑡 ,    𝑡 ∈ ℝ+ 

and initial condition, 

𝑢 𝑥, 0 = 𝑥,    𝑥 ∈ (0,1) 

Lafia Journal of Scientific & Industrial Research, 3(2) 

uj
k+1 - qDt(4((u3)xx)j

k(uxx)j
k+1 +

3((u2)x)j
k(ux)j

k+1 + h(x,t)j
k+1) = uj

k + qDt(-
3((u4)xx)j

k - 2((u3)x)j
k) + (1 - q)Dt(((u4)xx)j

k +
((u3)x)j

k + h(x,t)j
k)

(8)

uj
k+1 - qDt((24u(ux)2 + 12u2uxx)j

k(uxx)j
k+1) -

qDt((6uux)j
k(ux)j

k+1) - qDth(x,t)j
k+1 = uj

k -
qDt((36u2(ux)2 + 12u3uxx)j

k) - qDt((6u2ux)j
k) +

(1 - q)Dt((12u2(ux)2 + 4u3uxx)j
k) + (1-

q)Dt((3u2ux)j
k) + (1 - q)Dth(x,t)j

k

(9)
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The exact solution to this problem is 𝑢 𝑥, 𝑡 = 𝑥 cos 𝑡. 

For the spatial step size, time interval and highest time 

level, we used ℎ = 0.2, ∆𝑡 = 0.01 and 𝑇 = 0.05 

respectively. Brute-force method is applied on the 

results of problem 1 using ECBSM with 𝜃 = 1 (i.e. 

fully implicit scheme) and 𝜃 = 0.5 (i.e. Crank-Nicolson 

scheme) from 𝑝 = −10 to 𝑝 = 10 with 𝑝 −step size 

0.0001. The approximate solutions acquired by using 

HCBSM with the aid of Mathematica software and the 

approximate solutions by ECBSM for fully implicit 

scheme (𝜃 = 1) and Crank-Nicolson scheme (𝜃 = 0.5) 

are tabulated in Table 1 alongside the values of the 

exact solution.  

From Table 1, the results by the two numerical methods 

show that the approximate solutions by ECBSM for 

both fully implicit scheme and Crank-Nicolson scheme 

with p = 8.3732 and p = 3.0977 respectively are closer 

to the exact solutions compared to the ECBSM except 

for the solution at 𝑥 = 0.2. 

Further comparison between HCBSM and ECBSM is 

presented in terms of the absolute error, Euclidean error 

(𝐿2 −norm) and the maximum absolute error 

(𝐿∞ −norm) for both the fully implicit scheme and the 

Crank-Nicolson scheme as presented in Table 2. Fig. 1 

shows the plot of error for fully implicit scheme while 

Fig. 2 shows the plot of error for the Crank-Nicolson 

scheme for Problem 1. 

 

Table 1: Numerical results for Problem 1 

x 

Fully Implicit  

Scheme (θ = 1) 

Crank-Nicolson  

Scheme (θ = 0.5) Exact 

Solution HCBSM 

γ = 64.709 

ECBSM 

p = 8.3732 

HCBSM 

γ = 64.2167 

ECBSM 

p = 3.0977 

0.0 0.000000 0.000000 0.000000 0.000000 0.00000 

0.2 0.196306 0.196300 0.196902 0.199872 0.19975 

0.4 0.400332 0.396459 0.401231 0.399582 0.39950 

0.6 0.602650 0.601042 0.602759 0.599128 0.59925 

0.8 0.802445 0.797028 0.802249 0.798880 0.79900 

1.0 0.998750 0.998750 0.998750 0.998750 0.99875 

 

 

Table 2: Absolute, 𝐋∞ and 𝐋𝟐 errors for 

Problem 1 with 𝐓 = 𝟎. 𝟎𝟓 

x 

Fully Implicit  

Scheme (θ = 1) 

Crank-Nicolson  

Scheme (θ = 0.5) 

Absolute Error Absolute Error 

HCBSM 

γ = 64.709 

ECBSM 

p = 8.3732 

HCBSM 

γ = 64.2167 

ECBSM 

p = 3.0977 

0.0 0.000000 0.000000 0.000000 0.000000 

0.2 3.4441E-03 3.4498E-03 2.8484E-03 1.2203E-04 

0.4 8.3182E-03 1.0409E-03 1.7314E-03 8.1821E-05 

0.6 

0.8 

3.4002E-03 

3.4447E-03 

1.7917E-03 

1.9724E-03 

3.5086E-03 

3.2485E-03 

1.2194E-04 

1.2005E-04 

1.0 0.000000  0.000000 0.000000 0.000000 

L∞ 3.4447E-03 3.4498E-03 3.5086E-03 1.2203E-04 

L2 5.9984E-03 4.4816E-03 5.8288E-03 2.2554E-04 

 

 

 
 

Figure 1: Plot of error for fully implicit scheme 

 

 

 

Figure 2: Plot of error for Crank-Nicolson 

scheme 

 

 

Problem 2 

Consider the following parabolic IBVP, 

𝑢𝑡 𝑥, 𝑡 −  𝑢4 𝑥𝑥  𝑥, 𝑡 −  𝑢3 𝑥 𝑥, 𝑡 
= −12𝑥2𝑒4𝑡 − 3𝑥2𝑒3𝑡 + 𝑥𝑒𝑡 ,   𝑥
∈  0,1 , 𝑡 ∈ ℝ+ 

subject to the boundary conditions, 
𝑢 0, 𝑡 = 0,      𝑢 1, 𝑡 = 𝑒𝑡 ,    𝑡 ∈ ℝ+ 

and initial condition, 
𝑢 𝑥, 0 = 𝑥,    𝑥 ∈ (0,1) 

 
The exact solution to this problem is 𝑢 𝑥, 𝑡 = 𝑥𝑒𝑡 . 
For the spatial step size, time interval and highest 
time level, the values ℎ = 0.2, ∆𝑡 = 0.01 and 
𝑇 = 0.05 respectively are maintained.In this 
problem too, the brute-force method is applied on 
the results using ECBSM with 𝜃 = 1 (i.e. fully 
implicit scheme) and 𝜃 = 0.5 (i.e. Crank-Nicolson 
scheme) from 𝑝 = −10 to 𝑝 = 10 with 𝑝 −step size 
0.0001 and the best values of the free parameter, 𝑝 
are gotten to be 𝑝 = −9.7478 and 𝑝 = −8.3819 
respectively for the schemes. The approximate 
solutions acquired by using HCBSM and ECBSM for 
fully implicit scheme (𝜃 = 1) and Crank-Nicolson 

scheme (𝜃 = 0.5) are tabulated in Table 3 alongside 

the values of the exact solution. 
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From Table 3, the results by the two numerical methods 

show that the approximate solutions by HCBSM for 

both fully implicit scheme and Crank-Nicolson scheme 

with γ = 58.6282 and γ = 58.4378 respectively are closer 

to the exact solutions compared to the ECBSM. 

Comparison between HCBSM and ECBSM is 

presented in terms of the 𝐿2 −norm and 𝐿∞ −norm 

for both the fully implicit scheme and the Crank-

Nicolson scheme as presented in Table 4. Fig. 3 shows 

the plot of error for fully implicit scheme while Fig. 4 

shows the plot of error for the Crank-Nicolson scheme 

for Problem 2. 

 

Table 3: Numerical Results for Problem 2 

x 

Fully Implicit 

Scheme (θ = 1) 

Crank-Nicolson 

Scheme (θ = 0.5) Exact 

Solution HCBSM 

γ= 58.6282 

ECBSM 

p = −9.7478 

HCBSM 

γ = 58.4378 

ECBSM 

p = −8.3819 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.216099 0.217033 0.215943 0.207215 0.210254 

0.4 0.419057 0.414838 0.419003 0.414599 0.420508 

0.6 0.624918 0.617475 0.625074 0.621953 0.630763 

0.8 0.835296 0.828419 0.835586 0.833772 0.841017 

1.0 1.051270 1.051270 1.051270 1.051270 1.051270 

 

 

Table 4: Absolute, L∞  and L2 errors for 

Problem 2 with 𝐓 = 𝟎. 𝟎𝟓 

x 

Fully Implicit Scheme 

(θ = 1) 

Crank-Nicolson Scheme 

(θ = 0.5) 

Absolute Error Absolute Error 

HCBSM 

γ = 58.6282 

ECBSM 

p = −9.7478 

HCBSM 

γ = 58.4378 

ECBSM 

p = −8.3819 

0.0 0.000000 0.000000 0.000000 0.000000 

0.2 5.8447E-03 6.7793E-03 5.6887E-03 3.0389E-03 

0.4 1.4516E-03 5.6709E-03 1.5051E-03 5.9097E-03 

0.6 5.8447E-03 1.3288E-02 5.6884E-03 8.8092E-03 

0.8 5.7212E-03 1.2598E-02 5.4310E-03 7.2453E-03 

1.0 0.000000 0.000000 0.000000 0.000000 

L∞ 5.8447E-03 1.3288E-02 5.6887E-03 8.8092E-03 

L2 1.0157E-02 2.0332E-02 9.8224E-03 1.3201E-02 

 

 

 
 

Figure 3: Plot of error for fully implicit scheme 

 

 

 

Figure 4: Plot of error for Crank-Nicolson 

scheme 

 

 
Problem 3 

Consider the following problem of non-homogenous 
Buckmaster equation, 𝑢𝑡 𝑥, 𝑡 −  𝑢4 𝑥𝑥  𝑥, 𝑡 −
 𝑢3 𝑥 𝑥, 𝑡 = −12𝑥2(1 + 𝑡)4 − 3𝑥2(1 + 𝑡)3 + 𝑥,   𝑥 ∈
 0,1 , 𝑡 ∈ ℝ+ 
subject to the boundary conditions, 

𝑢 0, 𝑡 = 0,      𝑢 1, 𝑡 = 1 + 𝑡,    𝑡 ∈ ℝ+ 
and initial condition,  

𝑢 𝑥, 0 = 𝑥,    𝑥 ∈ (0,1) 
 
The exact solution to this problem is 𝑢 𝑥, 𝑡 = 𝑥(1 +
𝑡).The brute-force method is applied on the results 
of problem 3 using ECBSM with 𝜃 = 1 (i.e. fully 
implicit scheme) and 𝜃 = 0.5 (i.e. Crank-Nicolson 
scheme) from 𝑝 = −10 to 𝑝 = 10 with 𝑝 −step size 
0.0001 and the best values of the free parameter, 𝑝 
are obtained as𝑝 = ±8.5296  and 𝑝 = −8.3825 
respectively for the schemes. For the spatial step 
size, time interval and highest time level, we used 
ℎ = 0.2, ∆𝑡 = 0.01 and 𝑇 = 0.05 respectively. The 
approximate solutions of HCBSM and ECBSM for 
fully implicit scheme (𝜃 = 1) and Crank-Nicolson 
scheme (𝜃 = 0.5) are tabulated in Table 5. 

 

Table 4: Numerical results for Problem 3 

x 

Fully Implicit Scheme 
(θ = 1) 

Crank-Nicolson Scheme 

(θ = 0.5) Exact 

Solution HCBSM 

γ = 64.6753 

ECBSM 

p = ±8.5296 

HCBSM 

γ = 64.2172 

ECBSM 

p = −8.3825 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.206430 0.209028 0.206732 0.210597 0.210000 

0.4 0.420854 0.415619 0.421625 0.419875 0.420000 

0.6 0.633519 0.621413 0.633572 0.626113 0.630000 

0.8 0.843571 0.828915 0.843640 0.831882 0.840000 

1.0 1.050000 1.050000 1.050000 1.050000 1.050000 
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Table 5: Absolute, L∞  and L2 errors for 

Problem 3 with 𝐓 = 𝟎. 𝟎𝟓 

x 

Fully Implicit 

Scheme (θ = 1) 

Crank-Nicolson  

Scheme (θ = 0.5) 
Absolute Error Absolute Error 

HCBSM 

γ = 64.6753 

ECBSM 

p = ±8.5296 

HCBSM 

γ = 64.2172 

ECBSM 

p = −8.3825 

0.0 0.000000 0.000000 0.000000 0.000000 

0.2 3.5705E-03 9.7186E-03 3.2681E-03 5.9656E-04 

0.4 8.5413E-04 4.3814E-03 1.6247E-03 1.2499E-04 

0.6 3.5191E-03 8.5874E-03 3.5722E-03 3.8870E-03 

0.8 3.5709E-03 1.1085E-02 3.3639E-03 8.1178E-03 

1.0 0.000000  0.000000 0.000000 0.000000 

L∞ 3.5709E-03 1.1085E-02 3.5722E-03 8.1178E-03 

L2 6.2140E-03 1.4723E-02 6.1152E-03 9.0210E-03 

 

 

 
Figure 5: Plot of error for fully implicit scheme 

 

 

 
Figure 6: Plot of error for Crank-Nicolson scheme 

 

 

From Table 5, the results by the two numerical methods 

show that the approximate solutions by HCBSM for 

both fully implicit scheme and Crank-Nicolson scheme 

except for the point 𝑥 = 0.4 with 𝜃 = 0.5 are closer to 

the exact solutions compared to the ECBSM. 

In this example too, we comparethe results between 

HCBSM and ECBSM in terms of the absolute error 

(𝐿2 −norm) and the maximum absolute error 

(𝐿∞ −norm) for both the fully implicit scheme and the 

Crank-Nicolson scheme as presented in Table 6. Fig. 5 

shows the plot of error for fully implicit scheme while 

Fig. 6 shows the plot of error for the Crank-Nicolson 

scheme for Problem 3. 

 

Conclusion 

The Buckmaster equation just like many other partial 

differential equations is a model of some processes 

which can better be understood and explained if the 

equation is solved. These solutions can be arrived at by 

some analytical methods but in most situations, these 

analytical solutions are difficult to come by. Hence, the 

need for numerical methods that can be used as 

alternatives to the analytical ones. This work discusses 

the numerical solutions of the nonlinear non-

homogenous Buckmaster equation using the collocation 

method of exponential cubic B-spline. With the aid of 

the Mathematica software, this equation is solved by 

the ECBSM and the solutions obtained are compared 

with the solutions obtained by the HCBSM. It is 

observed that both methods are reliable and effective in 

solving the Buckmaster equation. 
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