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In this work, we introduce a new class of hybrid fixed points which arise 

from transformations within semigroups that exhibit both contractive and 

hybrid contraction properties. These fixed points have proven particularly 

useful in the context of optimization problems, providing a framework 

that guarantees convergence. The study highlights the application of 

hybrid fixed points in a variety of optimization schemes. By leveraging 

the hybrid contraction condition, it is shown that these methods offer 

improved stability, faster convergence, and more reliable solutions. These 

results are particularly significant for fields such as machine learning, 

where optimization algorithms often struggle with convergence issues in 

high dimensional spaces. 
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Introduction 

Fixed point theory is a cornerstone of mathematical 

analysis with widespread applications across various 

fields such as optimization, functional analysis, 

computational mathematics, and dynamical systems. It 

addresses the problem of finding points that remain 

invariant under a given transformation. More 

specifically, a fixed point 𝑥 of a transformation 𝑇 

satisfies 𝑇(𝑥) = 𝑥. This concept is not only central in 

pure mathematics but also provides the foundation for 

practical algorithms in numerical methods, 

optimization, and game theory. 

The classical results in fixed point theory, such as the 

Banach Fixed Point Theorem [1] and the Brouwer 

Fixed Point Theorem [2], have been applied extensively 

in contexts where mappings are continuous and often 

contractive. These results offer powerful tools for 

proving the existence of fixed points and ensuring 

convergence in iterative processes. Additionally, many 

generalizations and extensions of these foundational 

results have contributed to improving convergence 

properties and expanding the theory's applicability [3–

5].  

However, as the scope of applications grows, so does 

the need to extend fixed point theory to more complex 

settings. One such extension is the consideration of 

semigroups, which generalize groups in algebra by 

relaxing the requirement of invertibility. Semigroups 

form a natural setting for modeling dynamic systems 

and iterative algorithms, where the transformations are 

applied repeatedly over time or in successive steps [6, 

7]. 

The integration of fixed point theory with semigroups 

opens new possibilities for analyzing dynamic 

processes that evolve over time. This paper aims to 

establish essential theorems regarding fixed points in 

semigroups, particularly focusing on hybrid fixed 

points, which combine contractive properties with other 

functional conditions. By extending the fixed point 

results to semigroups and exploring hybrid fixed points, 

this work contributes to the theory's applicability in 

optimization, dynamical systems, and iterative methods. 

Fixed point theory has been the subject of intensive 

study, particularly within the framework of metric 

spaces and Banach spaces. The foundational work by 

Banach [1] introduced the Banach Fixed Point 

Theorem, which established the conditions under which 

a contraction mapping on a complete metric space has a 

unique fixed point. This theorem laid the groundwork 

for much of the subsequent development of fixed point 

theory, particularly in the context of iterative methods 

used in optimization and computational mathematics. 

In addition to Banach's work, Nadler [4] made 

significant contributions to the study of fixed points in 

the context of metric and normed spaces, expanding on 

the conditions that guarantee the existence of fixed 

points. These results were further extended to more 

general settings, including non-linear mappings and 
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spaces that may not be complete. The study of fixed

points in metric spaces continues to be an area of active

research, with a focus on broadening the applicability

of fixed point results to more complex structures [5, 8].

The study of semigroups, particularly in the context of

fixed points, has also seen significant development.

Semigroups, as algebraic structures that capture the idea

of repeated transformations, are crucial in

understanding dynamic systems and iterative

algorithms. Howie [6] provided a comprehensive

treatment of semigroups, discussing their algebraic

properties and applications in various areas of

mathematics. This work forms the foundation for the

study of fixed points in semigroups, where

transformations may not be invertible but still exhibit

important structural properties that can lead to the

existence of fixed points.

Recent works have extended fixed point theory to in-

clude hybrid fixed points, which combine ele-

ments of contraction mappings with additional 

functional conditions. These hybrid fixed points have 

been shown to play an important role in iterative 

approximation methods, particularly in contexts 

where traditional contraction mappings may not suf-

fice. Takahashi et al. [5] and Kirk [8] both explored 

hybrid fixed points in metric spaces, demonstrating 

their usefulness in iterative methods for solv-

ing equations and optimization problems. These 

studies have highlighted the potential of hybrid 

fixed points to improve the convergence and stabil-

ity of algorithms in fields such as image processing, 

machine learning, and numerical optimization.

Additionally, studies have explored the application of

fixed point theory in dynamic systems, where

semigroups of transformations are used to model

processes that evolve over time. The extension of fixed

point results to these more complex settings allows for

a deeper understanding of the behavior of dynamic

systems, particularly in the presence of noise and

perturbations. The integration of hybrid fixed points

with these systems provides a powerful tool for

analyzing stability and convergence in real world

problems [2, 4].

 

Materials and Methods 

Here, we present definitions that are important and 

form the foundation to our work. More of these 

definitions not presented here can be seen in the works 

of Banach [1], Howie [6] and Kirk [8]. 

 

Definition 1: Semigroup 

A semigroup (𝑆,∗) is a set S with an associative binary 

operation ∗ such that for all 𝑥, 𝑦, 𝑧 in 𝑆, we have (𝑥 ∗
𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑦 ∗ 𝑧). 
 

Definition 2: Hybrid fixed point 

A point 𝑥 in 𝑋 is a hybrid fixed point of a function 

𝑇: 𝑋 → 𝑋 if there exists an auxiliary function 𝑔: 𝑋 → 𝑋 

such that 𝑔(𝑇(𝑥)) = 𝑥. 

 

 

Results and Discussion 

Theorem 1 

The semigroup 𝑆 of hybrid contractive 

transformations acting on a compact metric space 𝑋 

possesses a unique hybrid fixed point. 

Proof: 

Let 𝑆 = {𝑇𝑡 |𝑡 ∈ 𝑇} be a semigroup of transformations 

acting on the compact metric space 𝑋.Each 

transformation 𝑇𝑡 is assumed to be hybrid-contractive. 

This means that for each 𝑇𝑡 , there exists a function 

𝑔: 𝑋 → 𝑋 and a constant 0 ≤ 𝑐 < 1 such that the 

following contraction condition holds for all 𝑥, 𝑦 ∈ 𝑋 

𝑑(𝑔(𝑇𝑡(𝑥)), 𝑔(𝑇𝑡(𝑦))) ≤ 𝑐 · 𝑑(𝑥, 𝑦) 

Where: 𝑑(·,·) denotes the metricon 𝑋, and c is a 

constant satisfying 0 ≤ 𝑐 < 1. 
 

Since 𝑋 is compact and the transformations 𝑇𝑡  are 

hybrid-contractive, we know from the Banach fixed 

point theorem (contraction mapping theorem) that each 

individual transformation 𝑇𝑡  has a unique fixed point. 

Let 𝑥∗ denote the fixed point of  𝑇𝑡 , 

𝑇𝑡 𝑥
∗ = 𝑥𝑡

∗ 
 

Thus, for each 𝑡 ∈ 𝑇, the transformation 𝑇𝑡  admits a 

fixed point. Now, we need to show that the semigroup 

𝑆 as a whole has a unique hybrid fixed point, i.e., a 

point 𝑥∗ ∈ 𝑋 such that for each 𝑇𝑡 , 𝑇𝑡 𝑥
∗ = 𝑥∗. 

Since 𝑋 is compact, the iterates generated by applying 

successive transformations 𝑇𝑡  will remain within a 

bounded region of 𝑋.We define the sequence {𝑥𝑛 } by: 

𝑥𝑛+1 = 𝑇𝑡𝑛
(𝑥𝑛 ) 

 

For some sequence {𝑡𝑛} ⊆ 𝑇. Since the semigroup 

property holds (i.e., 𝑇𝑡𝑇𝑠 = 𝑇𝑡+𝑠), each 𝑇𝑡  is 

continuous, and due to the hybrid contractive property, 

we know that the distance between consecutive iterates 

will shrink, forming a Cauchy sequence. 

Also, 𝑋 is compact, that is every Cauchy sequence in 

𝑋 must converge to some limit 𝑥∗ ∈ 𝑋. Therefore, the 

sequence {𝑥𝑛 } converges to a limit point 𝑥∗ ∈ 𝑋. 

Now, we need to verify that 𝑥∗ is indeed a fixed 

point of all transformations in the semigroup 𝑆. 

By the contraction property, we have: 

𝑑(𝑔(𝑇𝑡(𝑥∗)), 𝑔(𝑇𝑡(𝑦∗))) ≤ 𝑐 · 𝑑(𝑥∗, 𝑦∗) 
 

Since 𝑐 < 1, this implies that 𝑥∗ is the unique fixed 

point of the entire semigroup. Moreover, the uniqueness 

of the fixed point follows from the fact that the 

contraction mapping property forces the iterates to 

converge to a unique point. Hence, the fixed point 𝑥∗ is 

the unique hybrid fixed point of the semigroup 𝑆. 
 

Theorem 2 

If 𝑇 is a hybrid contractive transformation on a metric 

space 𝑋, then the hybrid fixed point is unique. 

Proof: 

Let 𝑇: 𝑋 → 𝑋 be a hybrid contractive transformation 

on the metric space 𝑋. By the definition of hybrid 

contraction, there exists a function 𝑔: 𝑋 → 𝑋 and a 

constant c such that for all 𝑥, 𝑦 ∈  𝑋, 
𝑑(𝑔(𝑇(𝑥)), 𝑔(𝑇(𝑦))) ≤ 𝑐 · 𝑑(𝑥, 𝑦), 

Where: 𝑑(·,·) is the metric on 𝑋 and 0 ≤ 𝑐 < 1. 
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Let 𝑥∗ and 𝑦∗ be two hybrid fixed points of. Then, by 

definition, we have: 

𝑇(𝑥∗) = 𝑥∗, 𝑇(𝑦∗) = 𝑦∗. 

Applying the contraction condition to 𝑥∗ and 𝑦∗, we 

get: 

𝑑(𝑔(𝑇(𝑥∗)), 𝑔(𝑇(𝑦∗))) ≤ 𝑐 · 𝑑(𝑥∗, 𝑦∗). 

 

Since 𝑇 𝑥∗ = 𝑥∗ and 𝑇(𝑦∗) = 𝑦∗, this simplifies 

to: 

𝑑(𝑔(𝑥∗), 𝑔(𝑦∗)) ≤ 𝑐 · 𝑑(𝑥∗, 𝑦∗). 
 

Because 0 ≤ 𝑐 < 1, the contraction property implies 

that the distance between 𝑥∗ and 𝑦∗ must shrink. Since 

𝑔 is continuous, the fixed point property of 𝑇 forces 

𝑥∗ = 𝑦∗. Thus, the hybrid fixed point of  𝑇 is unique. 

 

Proposition 1 

For an optimization algorithm employing a 

contractive transformation 𝑇 (or hybrid-contractive 

transformation), the sequence of iterates converges to 

a fixed point, which represents the optimal solution. 

Proof: 

Let 𝑇: 𝑋 → 𝑋 be a contractive (or hybrid-

contractive) transformation acting on a metric 

space 𝑋.The optimization algorithm generates a 

sequence of iterates {𝑥𝑛 } according to the rule: 

𝑥𝑛+1 = 𝑇(𝑥𝑛 ), 
 

Starting from some initial point 𝑥0 ∈ 𝑋. 
Since 𝑇 is contractive (or hybrid contractive), there 

exists a constant 0 ≤ 𝑐 < 1 such that for all 𝑥, 𝑦 ∈
𝑋, 

𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝑐 · 𝑑(𝑥, 𝑦). 
 

This ensures that the sequence {𝑥𝑛 } is a Cauchy 

sequence. Since 𝑋 is a complete metric space (or 

compact in some cases), every Cauchy sequence in 

𝑋 converges to a limit point𝑥∗ ∈ 𝑋. 
Let us now show that 𝑥∗ is a fixed point of 𝑇. Since 

{𝑥𝑛 } converges to 𝑥∗, we have: 

lim
𝑥→∞

𝑥𝑛 = 𝑥∗ 

 

Applying the transformation 𝑇 to both sides of this 

equation, and using the continuity of 𝑇 (which holds 

because 𝑇 is contractive), we get  

𝑇 𝑥∗ = lim
𝑛→∞

𝑇 𝑥𝑛   

     

 = lim𝑛→∞ 𝑥𝑛+1 

= 𝑥∗. 
 

Thus, 𝑥∗ is a fixed point of 𝑇(𝑥∗) and 𝑥∗ fixed point of 

the transformation 𝑇, the limit 𝑥∗ represents the optimal 

solution to the optimization problem. 

Therefore, for an optimization algorithm employing a 

contractive (or Hybrid contractive) transformation 𝑇, 

the sequence of iterates {𝑥𝑛} converges to a fixed 

point, which represents the optimal solution. 

 

Theorem 3 

If 𝑇 is a weakly contractive transformation in a 

Banach space 𝑋, then its fixed point is stable under 

small perturbations in φ and the space 𝑋. 

Proof: 

Let 𝑇: 𝑋 → 𝑋 be a weakly contractive 

transformation on a Banach space 𝑋. This means that 

there exists a constant 0 ≤ 𝑐 < 1 such that for all 

𝑥, 𝑦 ∈ 𝑋, 
𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝑐 · 𝑑(𝑥, 𝑦). 

Let 𝑥∗ be the fixed point, so that 

𝑇(𝑥∗) = 𝑥∗. 
 

Now consider a small perturbation, denoted 𝑇′, which is 

close to 𝑇 in the sense that 

𝑑(𝑇(𝑥), 𝑇′(𝑥)) ≤ 𝜖 · 𝑑(𝑥, 𝑦) 

 

For some small 𝜖 > 0. This perturbation 𝑇′ 
is 

assumed to be weakly contractive as well, with a 

similar contraction constant 𝑐′, where 𝑐′ < 1. 
 

We aim to show that the fixed point of 𝑇′, denoted by 

𝑥′∗, is close to the fixed point 𝑥∗ of 𝑇. 

Let 𝑥′∗ be the fixed point of 𝑇′, so that 

𝑇′ 𝑥′∗ = 𝑥′∗. 
We now analyze the distance between𝑥∗ and 𝑥∗. By the 

weak contraction property, we have: 

𝑑 𝑇 𝑥∗ , 𝑇′ 𝑥∗  ≤ 𝑐 · 𝑑 𝑥∗, 𝑥′ ∗ + 𝜖 · 𝑑 𝑥∗, 𝑥′ ∗  

= 𝜖 · 𝑑(𝑥∗, 𝑥′ ∗). 
 

Thus, the fixed points of 𝑇and 𝑇′ are close to each 

other, with the distance between them shrinking as the 

perturbation𝜖 gets smaller. 

Since 𝑇′ is weakly contractive, it follows that 𝑥′∗ will 

also satisfy a similar contraction property and will 

converge to the fixed point 𝑥∗ of 𝑇 as the perturbation 

vanishes. Specifically, for sufficiently small 𝜖, the fixed 

point 𝑥∗ of 𝑇 ′  will be within a small neighborhood of 

𝑥∗. 
Thus, the fixed point 𝑥∗ of 𝑇is stable under small 

perturbations in 𝑇 and the Banach space 𝑋. As 𝑇 

approaches, its fixed point 𝑥∗ approaches 𝑥 ′∗, 

demonstrating the stability of 𝑥∗ 

Example  

Consider the compact metric space 𝑋 = [0,1] with the 

standard Euclidean metric |𝑑(𝑥, 𝑦) =∣ 𝑥 − 𝑦 ∣. Define a 

semigroup 𝑆 of transformations {𝑇𝑡} on 𝑋 as follows: 

𝑇𝑡 𝑥 =
𝑥

2
+

𝑡

4
, 𝑓𝑜𝑟  𝑡 ≥ 0.  

 

Define 𝑔(𝑥)  =  𝑥2, and take 𝑐 =
1

2
, satisfying the 

hybrid contractive condition 

𝑑  𝑔 𝑇𝑡 𝑥  , 𝑔 𝑇𝑡 𝑦   =   
𝑥

2
+

𝑡

4
 

2

−  
𝑦

2
+

𝑡

4
 

2

  

                   ≤
1

2
 𝑥 − 𝑦  

 

Since 𝑋 is compact and each 𝑇𝑡  is hybrid contractive, 

there is a unique hybrid fixed point in 𝑋, given by 

solving 𝑇𝑡(𝑥∗) = 𝑥∗, which leads to 𝑥∗ =
𝑥∗

2
+

𝑡

4
, and 

hence 𝑥∗ =
𝑡

2
 which converges to a unique limit. 
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Summary and Conclusion 

In conclusion, this paper provides an extension of 

classical fixed point theory to semigroups, with 

particular emphasis on the concept of hybrid fixed 

points. Traditionally, fixed point theorems have been a 

cornerstone in various mathematical fields, especially 

in areas involving iterative methods and optimization.  
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