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In this study, a three-point block backward differentiation formula (3PBBDF) 

method is derived for solving first-order stiff initial value problems (IVPs) of 

ordinary differential equations (ODEs). The newly proposed method is analyzed for 

its key properties and is found to be A-stable, zero-stable, and effective in handling 

stiff IVPs. To evaluate the performance of the 3PBBDF method, several stiff IVPs 

are solved, and the results are compared against existing numerical schemes. The 

comparison, based on tabulated results and plotted graphs, demonstrates that the 

proposed method offers superior accuracy in terms of error scaling over three 

competing methods and also outperforms two methods in terms of execution time. 

Consequently, the proposed 3PBBDF scheme proves to be an efficient tool for 

integrating stiff IVPs in ODEs. 
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Introduction 

The Backward Differentiation Formula (BDF) is a 

widely used numerical method for solving ordinary 

differential equations (ODEs). It belongs to the class of 

linear multistep methods, which estimate a function's 

derivative at a given point based on its values at 

previous points. The BDF method is particularly 

effective for solving stiff ODEs, which are common in 

fields such as chemical kinetics, fluid dynamics, and 

structural mechanics. 

The general expression for a backward differentiation 

formula (BDF) can be formulated as 

 𝑦 =  𝛼𝑘𝑦𝑛+𝑗 + ℎ𝛽𝑘𝑓𝑛+𝑘 
𝑘−1
𝑗=0  (1)          

Where ℎ and 𝑘 represent the step size and step number, 

respectively, 𝛼, 𝛽 define specific multistep used to 

approximate the derivative, while 𝑛 is the current step 

index. The selection of coefficients is done in a manner 

that ensures the method attains order 𝑘, which is the 

highest achievable.  

 

Implicit in nature, backward differentiation formula 

methods necessitate the resolution of nonlinear 

equations at every step. Typically, a modified form of 

Newton's method is applied for the solution of these 

nonlinear equations. The stability of numerical 

techniques in handling stiff equations is denoted by 

their domain of absolute stability. The stability 

characteristic of BDF methods diminishes as the step 

number rises. To address stiff systems, BDF methods 

must consider factors such as step size, stability, 

accuracy, and computational cost. A new fixed-

coefficient diagonally implicit block backward 

differentiation formula was proposed to solve stiff 

initial value problems [1]. 

A diagonally implicit extended 2-point super-class of 

block backward differentiation formula with two off-

step points was developed for solving first-order stiff 

initial value problems [2]. 

Recent innovations include the development of a 3-

point variable step block hybrid method (3-point 

VSBHM) using Lagrange polynomials and an 

increment of step sizes [3]. Another innovation aimed at 

improving the numerical resolution of stiff ODEs was 

proposed which established a special class of 

multiderivative multistep methods with two free 

parameters [4]. Husin et al. presented accuracy 

improvement of block backward differentiation 

formulas for solving stiff ordinary differential equations 

using modified versions of Euler’s method [5]. 

In this work, we wish to derivea three-point block 

backward differentiation formula (3PBBDF) and apply 

it to solve first-order stiff initial value problems (IVPs) 

of ordinary differential equations (ODEs). Furthermore, 

we shall carry out convergence analysis and compare 

the results obtained with other existing methods.  

 

Materials and Methods 

A stiff equation is a differential equation that exhibits 

unstable behavior when solved numerically using 

certain methods, unless the step size is extremely small. 

This is due to rapid variations in the solution caused by 

certain terms, which demand the use of very small-time 

steps to maintain stability when using explicit methods. 

As a result, stiff equations can lead to slow and 

inefficient computations, making it important to choose 
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appropriate numerical methods and step sizes to achieve 

accurate and efficient solutions. 

A general form of a stiff ordinary differential equation 

(ODE) can be expressed as: 

𝑦′ 𝑡 = 𝑓(𝑡, 𝑦 𝑡 ),  𝑦 0 = 𝑦0 

where 𝑓 𝑡, 𝑦 𝑡  contains terms that exhibit fast decay 

or rapid changes, making the system stiff. A classic stiff 

equation is characterized by the presence of a small 

parameter that forces some solution components to vary 

quickly, while others evolve more slowly. 

 

Stiff equations are common in scientific and 

engineering applications, such as chemical kinetics, 

control systems, and fluid dynamics, where processes 

with vastly different timescales are modeled [6]. To 

tackle these challenges, researchers have developed 

methods specifically designed for stiff ordinary 

differential equations (ODEs). Additionally, a variable 

step-size multi-block backward differentiation formula 

approach has been developed to improve numerical 

solutions for stiff problems by dynamically adjusting 

the step size to accommodate rapid changes in the 

solution [7]. These advancements enhance the stability 

and efficiency of solving stiff ODEs, making them 

more applicable in complex scientific and engineering 

systems. 

Derivation through multistep collocation method  

The approach proposed by Soomro et al. [8] shall be 

used in this derivation where a k-step multistep 

collocation method with t interpolation points and m 

collocation points was obtained as: 

𝑦 𝑥 =  𝛼𝑗  𝑥 𝑦𝑛+𝑗 + ℎ  𝛽𝑗  𝑥 𝑓 𝑥𝑗 , 𝑦 𝑥𝑗    ,

𝑚−1

𝑗=0

𝑡−1

𝑗=0

 

𝑥𝑛 ≤ 𝑥 ≤ 𝑥𝑛+𝑘    (2) 

 

The continuous coefficients  𝛼𝑗 (𝑥) and 𝛽𝑗 (𝑥) are 

defined as: 

𝛼𝑗  𝑥 =  𝛼𝑗 ,𝑖+1𝑥
𝑖 ,𝑡+𝑚−1

𝑖=0 J∈ {0,1, … , 𝑡 − 1}       (3) 

𝛽𝑗  𝑥 =  ℎ𝛽𝑗 ,𝑖+1𝑥
𝑖 ,𝑡+𝑚−1

𝑖=0  j∈ {0,1, … , 𝑡 − 1}      (4)  

 

To get 𝛼𝑗 (𝑥) and 𝛽𝑗  𝑥 , [8] arrived at a matrix equation 

of the form: 

 𝐷𝐶 =I     (5) 

Where I is the identity matrix of dimension (𝑡 + 𝑚) ×
(𝑡 + 𝑚) while D and C are matrices defined as: 

 

𝐷 =

 

 
 
 
 
 

1 𝑥𝑛 𝑥𝑛
2 … 𝑥𝑛

𝑡+𝑚−1

1 𝑥𝑛+1 𝑥𝑛+1
2 … 𝑥𝑛+1

𝑡+𝑚−1

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑛+𝑡−1 𝑥𝑛+𝑡−1

2 … 𝑥𝑛+𝑡−1
𝑡+𝑚−1

0 1 2𝑥0 …  𝑡 + 𝑚 − 1 𝑥0
𝑡+𝑚−2

⋮ ⋮ ⋮ ⋮ ⋮
0 1 2𝑥𝑚−1 …  𝑡 + 𝑚 − 1 𝑥𝑚−1

𝑡+𝑚−2 

 
 
 
 
 

 (6)  

 

𝐶 =  

𝛼0,1 𝛼1,1 … 𝛼𝑡−1,1 ℎ𝛽0,1 … ℎ𝛽𝑚−1,2

𝛼0,2 𝛼1,2 … 𝛼𝑡−1,2 ℎ𝛽0,2 … ℎ𝛽𝑚−1,2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝛼0,𝑡+𝑚 𝛼1,𝑡+𝑚 … 𝛼𝑡−1,𝑡+𝑚 ℎ𝛽0,𝑡+𝑚 … ℎ𝛽𝑚−1,𝑡+𝑚

   (7) 

 

From (5) it follows that C=𝐷−1 ,  where the columns of 

C give the continuous coefficients of the continuous 

scheme (2). 

Derivation of the Continuous Formulation of 

Backward Differentiation Formula for Step Number 

𝒌 = 𝟑 Incorporating two Off-Grid Collocation Point 

In this case, the number of interpolation points, 𝑡 = 5 

and the number of collocation points, 𝑚 = 1, then: 

𝑦 𝑥 = 𝛼0 𝑥 𝑦𝑛 + 𝛼1 𝑥 𝑦𝑛+1 + 𝛼1
2
 𝑥 𝑦𝑛+1

2
+

𝛼3
2
(𝑥)𝑦𝑛+3

2
+ 𝛼2 𝑥 𝑦𝑛+2 + ℎ𝛽3(𝑥)𝑓𝑛+3         (8) 

 

Thus, the matrix D become: 

 

𝐷 =

 

 
 
 
 
 

1 𝑥𝑛

1 𝑥𝑛 +
1

2
ℎ

𝑥𝑛
2 𝑥𝑛

3

(𝑥𝑛 +
1

2
ℎ)2 (𝑥𝑛 +

1

2
ℎ)3

𝑥𝑛
4 𝑥𝑛

5

(𝑥𝑛 +
1

2
ℎ)4 (𝑥𝑛 +

1

2
ℎ)5

  1 𝑥𝑛 + ℎ

  1 𝑥𝑛 +
3

2
ℎ

(𝑥𝑛 + ℎ)2 (𝑥𝑛 + ℎ)3

(𝑥𝑛 +
3

2
ℎ)2 (𝑥𝑛 +

3

2
ℎ)3

(𝑥𝑛 + ℎ)4 (𝑥𝑛 + ℎ)5

(𝑥𝑛 +
3

2
ℎ)4 (𝑥𝑛 +

3

2
ℎ)5

  1 𝑥𝑛 + 2ℎ
 0 1

(𝑥𝑛 + 2ℎ)2 (𝑥𝑛 + 2ℎ)3

2𝑥𝑛 + 6ℎ 3(𝑥𝑛 + 3ℎ)2

(𝑥𝑛 + 2ℎ)4 (𝑥𝑛 + 2ℎ)5

4(𝑥𝑛 + 3ℎ)3 5(𝑥𝑛 + 3ℎ)4 

 
 
 
 
 

  (9)       

 

Using maple 18, the inverse matrix 𝐶 = 𝐷−1is obtained gives the continuous scheme 

𝑦𝑛+1 =
1

108
ℎ𝑓𝑛+3 −

29

12
𝑓𝑛+1ℎ +

328

81
𝑦
𝑛+

3

2

−
8

3
𝑦
𝑛+

1

2

−
2

3
𝑦𝑛+2 +

23

81
𝑦𝑛 : 

𝑦
𝑛+

1

2

= −
87

175
𝑓
𝑛+

1

2

ℎ −
1

350
ℎ𝑓𝑛+3 −

79

105
𝑦
𝑛+

3

2

+
23

140
𝑦𝑛+2 +

9

5
𝑦𝑛+1 −

89

420
𝑦𝑛 : 

𝑦
𝑛+

3
2

=
261

301
𝑓
𝑛+

3
2
ℎ +

3

602
ℎ𝑓𝑛+3 −

171

301
𝑦𝑛+

1
2
−

99

172
𝑦𝑛+2 +

621

301
𝑦𝑛+1 +

97

1204
𝑦𝑛    (10)  

𝑦𝑛+2 = −
4

611
ℎ𝑓𝑛+3 +

174

611
𝑓𝑛+2ℎ +

3104

1833
𝑦
𝑛+

3
2

+
224

611
𝑦𝑛+

1
2
−

612

611
𝑦𝑛+1 −

107

1833
𝑦𝑛 : 

𝑦𝑛+3 =
50

87
𝑦𝑛 −

96

29
𝑦
𝑛+

1

2

+
225

29
𝑦𝑛+1 −

800

87
𝑦𝑛+3

2
+

150

29
𝑦𝑛+2 +

10

29
ℎ𝑓𝑛+3: 

Convergence analysis 

Here, the examinations of order, error constant, consistency, zero stability and region of the absolute stability of 

(10) are presented. 
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Order and error constant 

A linear multistep method is said to be of order 𝑝 if  

𝑐0 = 𝑐1 = 𝑐2 = . . . 𝑐𝑝 = 0, But 𝑐𝑝+1 ≠ 0 and 𝑐𝑝+1 is called the error constant, where, 

𝑐0 = 𝛼0 + 𝛼1 + 𝛼2+ . . . +𝛼𝑘  
𝑐1 =  𝛼1 + 2𝛼2 + 3𝛼3+ . . . +𝑘𝛼𝑘 − (𝛽0 + 𝛽1 + 𝛽2+. . . +𝛽𝑘) 

.  . .  . . 

.  . .  . . 

.  . .  . . 

𝑐𝑞 =
1

𝑞!
 𝛼1 + 2𝑞𝛼2+ . . . 𝑘𝑞𝛼𝑘 −

1

(𝑞 − 1)!
(𝛽0 + 2𝑞−1𝛽2+. . . +𝑘𝑞−1𝛽𝑘) 

𝑞 = 2, 3, 4, 5 . .. 
 

The order and error constants of the discrete schemes in (10) are obtained as follows: 

𝐶0 = 𝛼0 + 𝛼1 + 𝛼1

2

+ 𝛼3
2

+ 𝛼2 + 𝛼3 =

 
 
 
 
 
0
0
0
0
0 
 
 
 
 

 

𝐶1 = 𝛼1 +
1

2
𝛼1

2

+
3

2
𝛼3

2
+ 2𝛼2 + 3𝛼3 + 𝛽0 − 𝛽1 − 𝛽1

2
− 𝛽3

2
− 𝛽2 − 𝛽3 =

 
 
 
 
 
0
0
0
0
0 
 
 
 
 

 

𝐶2 =
1

2
𝛼1 +

1

8
𝛼1

2
+

9

8
𝛼3

2
+ 2𝛼2 +

9

2
𝛼3 − 𝛽1 −

1

2
𝛽1

2
−

3

2
𝛽3

2
− 2𝛽2 − 3𝛽3 =

 
 
 
 
 
0
0
0
0
0 
 
 
 
 

 

 

𝐶3 =
1

6
𝛼1 +

1

48
𝛼1

2
+

9

16
𝛼3

2
+

4

3
𝛼2 +

9

2
𝛼3 −

1

2
𝛽1 −

1

8
𝛽1

2
−

9

8
𝛽3

2
− 2𝛽2 −

9

2
𝛽3 =

 
 
 
 
 
0
0
0
0
0 
 
 
 
 

 

 

𝐶4 =
1

24
𝛼1 +

1

384
𝛼1

2
+

27

128
𝛼3

2
+

2

3
𝛼2 +

27

8
𝛼3 −

1

6
𝛽1 −

1

48
𝛽1

2
−

9

16
𝛽3

2
−

4

3
𝛽2 −

9

2
𝛽3 =

 
 
 
 
 
0
0
0
0
0 
 
 
 
 

 

 

𝐶5 =
1

120
𝛼1 +

1

3840
𝛼1

2
+

81

1280
𝛼3

2
+

4

15
𝛼2 +

81

40
𝛼3 −

1

24
𝛽1 −

1

384
𝛽1

2
−

27

128
𝛽3

2
−

2

3
𝛽2 −

27

8
𝛽3 =

 
 
 
 
 
0
0
0
0
0 
 
 
 
 

 

𝐶6 =
1

720
𝛼1 +

1

46080
𝛼1

2
+

81

5120
𝛼3

2
+

4

45
𝛼2 +

81

80
𝛼3 −

1

120
𝛽1 −

1

3840
𝛽1

2
−

81

1280
𝛽3

2
−

4

15
𝛽2 −

81

40
𝛽3 =

 
 
 
 
 
 
 
 
 
 
 −

17

8640
33

44800

−
321

385280
3

3760

−
5

454  
 
 
 
 
 
 
 
 
 
 

 

Therefore, the developed method is of order 5, with error constant 

𝐶6=−
17

8640
,  

33

44800
,  −

321

385280
,  

3

3760
,  and −

5

454
 

Zero stability 

A linear multistep method is said to be zero stable if all the roots of first characteristics polynomial have modulus 

less than or equal to unity and those roots with modulus unity are simple. 

Therefore, the zero stability of the discrete schemes in (10) will be obtained as follows: 
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𝐴 =

 
 
 
 
 
 
 
 1 +

29

12
𝑧

8

3
−

328

81

2

3
         −

1

108
𝑧

−
9

5
1 +

87

175
𝑧

79

105
    −

23

140

1

350
𝑧

−
621

301
612

611

−
225

29

171

301

−
224

611
96

29

1 −
261

301
𝑧

3104

1833
800

87

99

172

1 −
174

611
𝑧

−
150

29

−
3

602
𝑧

4

611
𝑧

1 −
10

29
𝑧 
 
 
 
 
 
 
 

 

𝐵 =

 
 
 
 
 
 
 
 
 
 
 
 0     0     0    0   

23

81

    0   0   0   0   −
89

420

   0    0   0   0    
97

1204

       0     0   0   0   −
107

1833

0    0   0   0    
50

87  
 
 
 
 
 
 
 
 
 
 
 

 

𝐴𝑟 − 𝐵 

 
 
 
 
 
 
 
 
 
 
 𝑟(1 +

29

12
𝑧)

8

3
𝑟 −

328

81
𝑟           

2

3
𝑟          −

1

108
𝑧𝑟 −

23

81

−
9

5
𝑟 𝑟(1 +

87

175
𝑧)

79

105
𝑟               −

23

140
𝑟

1

350
𝑧𝑟 +

89

420

−
621

301
𝑟

612

611
𝑟

−
225

29
𝑟

171

301
𝑟

−
224

611
𝑟

96

29
𝑟

𝑟(1 −
261

301
𝑧)

−
3104

1833
𝑟

800

87
𝑟

99

172
𝑟

𝑟(1 −
174

611
𝑧)

−
150

29
𝑟

−
3

602
𝑧𝑟 −

97

1204
4

611
𝑧𝑟 +

107

1833

𝑟  1 −
10

29
𝑧 −

50

87 
 
 
 
 
 
 
 
 
 
 

 

 

Taking the determinant of the above matrix, differentiate the determinant with respect to 𝑧 and solving for 𝑟, we 

obtained 

  𝑟 = 0 ,  𝑟 = 0 ,  𝑟 = 0 ,  𝑟 = 0 , [𝑟 = −
20𝑧3 + 77𝑧3 + 142𝑧 + 112

15𝑧4 − 54𝑧3 + 130𝑧2 − 190𝑧 + 128
]  

 

Evaluating 𝑟 at z=0, we obtained  

[ 𝑟 = 0 ,  𝑟 = 0 ,  𝑟 = 0 ,  𝑟 = 0 , [𝑟 =  
7

8
]] 

Therefore, the method is zero stable. 

Region of Absolute Stability 

The region of absolute stability for all the discrete 

schemes is all the points on the complex plane 

excluding the points inside the enclosed region (Fig. 1).  

 

 
Figure 1: Region of absolute stability of the 

proposed 3PBBDF method given in (10) 

 

 

Results and Discussion 

To test the reliability of the proposed 3POBBDF 

method, some numerical results are obtained by 

applying the method on some well-known chemical 

reaction problems. Comparison is done with other 

multistep methods. 

Example 1 (stiff chemical reaction problem) 

A chemistry problem with a stiff system is considered 

below, 

𝑦′
1

= −0.013𝑦2 − 1000𝑦1𝑦2 − 2500𝑦1𝑦3 

𝑦′
2

= −0.013𝑦2 − 1000𝑦1𝑦2  

𝑦′
3

= −2500𝑦1𝑦3 

With initial value 𝑦1 = 0, 𝑦2 = 1 and 𝑦3 = 1, 0 ≤ 𝑥 ≤
2. 
 

This problem is solved using ℎ = 10−5 for 3POBBDF. 

Table 1 shows the integration results of this problem at 

𝑥 = 2  in comparison with other methods [8–10]. 
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Table 1: Numerical solution of Problem 1 

𝒚𝒊 Exact solution 
Error in 

3POBBDF 

Error 

in [8] 

Error 

in [9] 

Error 

in [10] 

𝑦1 0.000003616933169289 1.6990E-17 1.1E-17 0.61E-16 0.82E-10 

𝑦2 0.9815029948230 3.8059E-12 2.2E-11 0.53E-10 0.61E-05 

𝑦3 1.0184933882440 -2.958E-12 4.39E-11 0.74E-10 0.57E-05 

 

 

Example 2 (Chemical Akzo Noble Problem) 

The chemical Akzo noble problem is a chemical 

process given by a stiff system with six non-linear 

differential equations. Mathematically the problem is 

described as, 
𝑑𝑦

𝑑𝑥
= 𝐹 𝑦 ,   𝑦 0 = 𝑦0 , 𝑦 ∈ 𝑅6 , 0 ≤ 𝑥 ≤ 180. 

The function 𝐹 𝑦  is defined by  

𝑑𝑦

𝑑𝑥
=

 
 
 
 
 
 
 
−2𝑟1 + 𝑟2 − 𝑟3 − 𝑟4
1

2
𝑟1 − 𝑟4 −

1

2
𝑟5 + 𝐹𝑖𝑛

𝑟1 − 𝑟2 + 𝑟3

−𝑟2 + 𝑟3 − 2𝑟4
−𝑟2 − 𝑟3 + 𝑟5

−𝑟5  
 
 
 
 
 
 

 

Where 𝑟𝑖  and 𝐹𝑖𝑛  are auxiliary variables given by 

𝑟1 = 𝑘1𝑦1
4𝑦2

1
2 , 𝑘1 = 18.7, 𝑟2 = 𝑘2𝑦3𝑦4 ,

𝑘2 = 0.58, 𝑟3 =
𝑘2

𝑘
𝑦3𝑦5 ,

𝑘 = 34.4, 𝑟4 = 𝑘3𝑦1𝑦4
2 ,

𝑘3 = 0.09, 𝑟5 = 𝑘4𝑦6
2𝑦2

1
2 ,

𝑘4 = 0.42 

𝐹𝑖𝑛 = 𝑘
𝐴  

𝑝 𝑂2 

𝐻
− 𝑦2 

𝑘
𝐴 = 3.3𝑝 𝑂2 = 0.9𝐻 = 737. 

 

The initial vector 𝑦0 = (0.437, 0.00123, 0, 0, 0,
  0.367)𝑇. 
The numerical results by proposed method at the end 

point (𝑥𝑒𝑛𝑑 =180) are shown in Table 2 

 

Table 2: Numerical solution of Problem 2 

𝒚𝒊 Error in 

3POBBDF 
Error in [8] Error in [9] 

𝑦1 1.936737E-12 6.92288E-6 1.16162E-1 

𝑦2 1.936735E-12 1.16287E-8 1.11941E-3 

𝑦3 1.936734E-12 3.55564E-6 1.62125E-1 

𝑦4 -1.722661E-9 1.97555E-7 3.39591E-3 

𝑦5 -1.722660E-9 1.71447E-5 1.64618E-1 

𝑦6 -1.722660E-9 2.12229E-6 1.98954E-1 

 

 

Example 3 (stiff chemical reaction problem) 

Consider the stiff system IVPs. 

𝑦′
1

= −1002𝑦1 + 1000𝑦2
2 

𝑦′
2

= 𝑦1 − 𝑦2 1 + 𝑦2  

With the initial value as 𝑦1(0) = 1and 𝑦2(0) = 1 

having exact solutions as, 

𝑦1 = exp −2𝑥  
𝑦2 = exp −𝑥  
 

This problem is solved at 𝑥 = 50, by new method and 

compared the results with fourth order two step hybrid 

method with one off-step point. Here the stepsize 

ℎ = 0.05 is used for compared and proposed methods. 

Table 3 shows the numerical results. 

 

Table 3: Numerical solution of Problem 3 

𝒚𝒊 Error in 

3POBBDF 
Error in [8] Error in [9] 

𝑦1 4.1397092E-45 7.38E-24 7.14E-21 

𝑦2 6.4422159E-23 4.83E-25 3.34E-19 

 

 

Conclusion 

In this work, an implicit 3 Point block backward 

differentiation formula (3PBBDF) was derived for the 

numerical solution of stiff systems of first order IVP 

arising from chemical reactions such as Chemical 

AKZO and Stiff Chemical Problems. The approach is 

based on the block backward differentiation formula 

(BBDF), in which at each step of the integration, four 

approximation are generated simultaneously. Based on 

the stability analysis of the method, it is consistent and 

zero-stable, thus is convergent. Since it has an A-

stability properties, the method is declared suitable for 

solving stiff Ordinary differential equations (ODEs).  

The numerical results obtained through the 3PBBDF 

and compared to the methods by Soomro et al. [8], 

Khalsaraei et al. [9], Ismail and Ibrahim [10], the 

accuracy of the numerical solutions in terms of absolute 

error at specific points is improved. Hence the proposed 

method can be successfully applied on stiff systems 

generated from chemical reactions because of their high 

order, accuracy and wider stability region. Therefore, 

the 3PBBDF can be considered a suitable solver for 

ordinary differential equations. Future research could 

improve efficiency by implementing variable step sizes 

for solving ODEs. 
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