

Bird Species Composition, Abundance and Diversity across Habitat Types in Shere Hills Reserve, Plateau State, Nigeria

Collina Kambai^{1,3}*, Danjuma Filibus Dami^{1,2} & Adams Adamanyiwa Chaskda^{1,2}

¹Department of Zoology, University of Jos, Plateau State, Nigeria

A.P. Leventis Ornithological Research Institute (APLORI),

University of Jos Biological Conservatory, Amurum Forest, Plateau State, Nigeria

³Department of Forestry and Environmental Technology, Federal College of Forestry, Jos, Plateau State, Nigeria

Abstract

This study examined bird species composition, abundance and diversity in Shere Hills Reserve, Plateau State, North-central Nigeria. The region, characterized by a savanna ecosystem interspersed with rocky outcrops and gallery forests, has a mean annual rainfall of 1,260 mm and a temperature range of 19.4 to 34.5°C. Bird surveys were conducted across 65 points using the point count method, and points were selected using stratified random sampling method. Observations were made daily between 6:30 a.m. and 10:30 a.m., and species were identified using 'Birds of Western Africa' field guide. A General Linear Model (LM) was used to calculate bird diversity and abundance across the different habitat types. A total of 6,427 birds representing 142 species and 53 families were recorded. Gallery forests exhibited the highest species composition (121 species), followed by savanna (111 species), and rocky outcrops (108 species). Common species included Blue-breasted Kingfisher in gallery forests, Chestnut-backed Sparrow Lark in savannas, and Rock-loving Cisticola in rocky habitats. Despite these differences in species composition, bird abundance and diversity did not vary significantly across habitats ($F_{2,585} = 0.59$, p = 0.56). The savanna (1.92 \pm 0.03) and gallery forest (1.91 \pm 0.03) had slightly higher diversity compared to rocky outcrops (1.87 \pm 0.03). These findings highlight the critical role of habitat heterogeneity in sustaining avian biodiversity within the Shere Hills Reserve, as each habitat type supports unique bird species, thereby underscoring the need for targeted conservation strategies that preserve the ecological integrity and functionality of these diverse habitats to maintain overall biodiversity.

Article History

Submitted December 30, 2024

Revised February 28, 2025

First Published Online March 06, 2025

*Corresponding author C. Kambai ⊠ talk2nev@yahoo.com;

kambai.c@frin.gov.ng

doi.org/10.62050/ljsir2025.v3n1.387

Keywords: Abundance, birds, composition, diversity, habitat, Shere Hills Reserve

Introduction

Bird species are critical components of ecological systems, contributing to processes such as pollination, seed dispersal, pest control, and nutrient cycling [1, 2, 3]. Additionally avian species are indicators of environmental health. They offer information, about the quality of habitats, the diversity of species present and the stability of ecosystems [4]. Various species are helpful in monitoring changes due to their diverse nature and abundance. These factors mirror the conditions of their habitat [5]. Conservation strategies should account for the ecological characteristics of different habitats and the specific interactions between fostering community involvement species, in Understanding conservation initiatives [6]. the abundance, diversity, and composition of bird species in specific habitats is crucial for monitoring ecosystem changes and guiding conservation efforts. Additionally, understanding the relationship between natural land cover and avian diversity can inform land management practices, emphasizing the importance of balanced land use approaches [7]. Habitat structure and vegetation composition significantly influence the distribution and abundance of bird species, highlighting their

dependence on habitat quality [8]. Numerous studies emphasize the complex interactions between bird assemblages and their environments, stressing the role that vegetation traits play in regulating species abundance and richness [9]. Both resident and migratory birds' habitats and movements are greatly influenced by climate, with different species adjusting to certain biomes [10]. Bird populations and their migration patterns may be impacted by changes in climate variables like temperature and precipitation, which can also change the availability and quality of habitat [11]. Anthropogenic activities that degrade and destroy avian habitats are a major factor in decreasing biodiversity globally [12]. According to research, the main causes of these declines, which mostly impact bird populations and their ecosystems, are habitat degradation, pollution, and climate change [13].

Effective conservation decision-making, such as determining habitat protection and restoration goals to preserve significant ecological phenomena like species–area thresholds, depends on understanding interspecific variation in species' responses to human disturbances [14]. Although it is commonly believed that protected areas conserve ecological communities [15], protected

areas usually fall short of this goal, especially in poor nations with limited funding and national conservation and protected area plans. Shere Hills Reserve in Plateau State, Nigeria, presents a diverse ecological landscape that supports various avian communities across its distinct habitat types. The interaction of dense gallery forests, open savannas, and rugged rocky outcrops creates unique conditions that affect bird species richness and abundance [16]. This research aimed to examine the diversity, abundance and richness of bird species in these Shere Hills habitat types. Diverse ecological communities across contrasting habitats are seriously threatened by human activities including agriculture, deforestation, and urbanization. These actions ultimately affect biodiversity and ecosystem services by causing habitat destruction, fragmentation, and degradation [17].

For conservation and habitat management to be effective, it is essential to understand how bird communities react to different environments. Research indicates that avian species exhibit distinct responses to different habitat types, influenced by factors such as anthropogenic impacts, ecological characteristics, and land use [6]. Adapting conservation strategies to particular ecological situations requires this knowledge. In order to maintain avian diversity and the ecological services that birds offer, including pollination, seed dispersal, and pest control, the knowledge gathered from this study are intended to provide baseline data for habitat-specific conservation measures. This study emphasizes the importance of habitat heterogeneity in maintaining ecological resilience and stability by showcasing the distinct contributions made by each habitat to total biodiversity.

Materials and Methods

Description of the study area

This research was carried out in Shere Hills, Jos Plateau in North Central Nigeria. The Hills lie between latitudes $(9^{\circ} 51' 18''N \text{ and } 10^{\circ} 00' 00''N)$ and longitude (8°54'10''E and 9° 6'41''E). It has numerous high peaks, with the highest peak reaching a height of about 1, 829 metres or 6,001 feet above sea level. It is the highest point of the Jos Plateau and is characterized by a mean annual rainfall of 1,260 mm (1,050-1,403 mm), peaking between July and August. The mean annual temperature is about 22°C, but mean monthly values vary between 19.4°C in the coolest month of December when the area comes under the influence of the cool and dry desiccating north-easterly tropical continental air mass (harmattan) and 34.5°C in the hottest month of April [18]. The dominant habitat type in this ecosystem is the rocky outcrop and savanna with patches of gallery forest. The vegetation of the main area is typically that of the Jos plateau with mainly scattered bushes and grasses, rocky outcrops and fragments of riparian forest [19]. The bushes are usually cleared for farming, fuel wood and charcoal production.

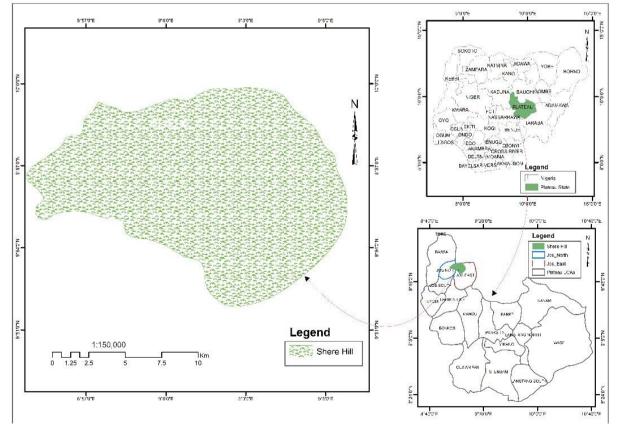


Figure 1: Map of Shere Hills reserve

Bird survey

Bird surveys were conducted using the point count method. A total of 65 points were selected across different habitat types using stratified random sampling. Each point within the three habitat types was spaced 300 meters apart, as described by Bibby *et al.* [20]. The habitat types surveyed included gallery forest, savanna, and rocky outcrop. The rocky habitat was characterized by more than 70% rocky ground cover, savanna habitats had over 70% grass cover, and gallery forests were dominated by trees with more than 50% canopy cover, typically accompanied by flowing water.

The number of points per habitat type varied due to differences in the proportional extent of each habitat, with savanna and rocky habitats being more prevalent: Rocky (23 points), Savanna (24 points), and Gallery Forest (18 points). To minimize the influence of the time of day on bird activity, the daily starting point for surveys was alternated among the sites.Since the majority of bird species are known to be most active during this time, surveys were carried out every day between 6:30 and 10:30 a.m., which is the best time to find and identify avian populations. Due to cooler temperatures, less disturbance, and the necessity of establishing territories and feed after the night's sleep, birds are usually active in the early morning hours. Although evening foraging activity is significant, it is typically less intense and lasts shorter than morning activity [20, 21]. For this reason, morning observations are prioritized, which is in line with standard ornithological practices and guarantees higher data quality and consistency. These behaviors improve detectability through both visual and auditory cues, providing more comprehensive data on species presence and abundance. Bird calls were identified in the field by a trained ornithologist, supplemented by recordings captured using a digital voice recorder which was subjected to further analysis to ascertain birds' identity outside the field. Bird species were identified directly using a pair of oblivion binocular and confirmed with Birds of Western Africa field guide [22].

Data analysis

Bird species alpha diversity was calculated using the indices q = 0 representing the species richness and q = 1representing the exponential value of the Shannon index as well as considering the species and their abundances- ecological diversity [23]. This was estimated using the diversity function in the vegan R package [24]. Bird abundance was estimated as the total number of individual species found at a point at each sampling time. A test of normality was carried out using the Shapiro-Wilks test and histogram. The assumption of a normal distribution was not met for bird abundance, and was logarithmically transformed using the function "log" in R. Using a General Linear Model (LM), bird diversity and abundance was compared across the different habitat types. The Venn diagram function within the Venn Diagram package was used to visualize species composition across the various habitat types through a Venn diagram. Finally, a rank abundance plot of bird species in the different habitats was constructed to investigate species composition. All statistical analyses were performed using R 4.3.1 statistical software [25].

Results and Discussion

Bird species composition across Shere Hills' habitat types The study recorded a total of 6,427 individual birds, representing 142 bird species belonging to 53 families across the three habitat types, across the three main habitat types: rocky outcrops, gallery forests, and savannas (Table 1, Fig. 2). Among the habitats, the gallery forest had the highest species richness, with 121 species observed. Some specialist birds recorded in the gallery forest included Blue-breasted Kingfisher, Giant Kingfisher, Pied Kingfisher, Red-billed Hornbill, Brown Babblers, Black-capped Babblers, Beautiful Sunbird, and Copper Sunbird, among others.

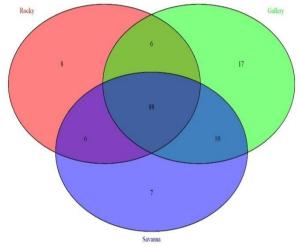


Figure 2: Composition of bird species across habitat types in Shere Hills Reserve

The savanna habitat recorded 111 species, including habitat-specific species such as the Chestnut-backed Sparrow Lark, Crested Lark, and Flappet Lark. In contrast, the rocky outcrop supported 108 species, with notable birds such as the Stone Partridge and Rockloving Cisticola being characteristic of this habitat.

The high species composition in the gallery forest highlights the importance of its complex vegetation structure, which provides abundant resources and diverse microhabitats for birds. This aligns with the findings by [26], who noted that the structural complexity of gallery forests enhances local species diversity by offering multiple layers and niches. In contrast, the savanna supports slightly fewer species, favoring birds adapted to open spaces with access to ground-level food resources [27]. The rocky outcrop, with its sparse vegetation, hosts the fewest species due to limited resources and nesting areas but supports species specialized for rugged terrain [28]. The gallery forest hosted several specialist bird species, such as Bruce's Green Pigeon, Beautiful Sunbird, Copper Sunbird, Tambourine Dove, and Bearded Barbet, which were exclusively observed in this habitat. These specialists thrive in specific environments due to their reliance on unique resources and adaptations. Furthermore, generalist species like the Variable Sunbird and Scarlet-chested Sunbird, which serve as avian pollinators, were found across all habitat types, demonstrating their ability to adapt to different environments, including disturbed areas like Shere Hills Reserve which is severely degraded. This distribution underscores how important it is to have diverse habitats in Shere Hills, for upholding avian diversity.

Table 1: Composition of bird species in the habitat types of Shere Hills Reserve

S/N	Bird Species	Scientific names	Family	Gallery	Savanna	Rocky
1	Yellow-billed Kite	Milvus aegyptius	Accipitridae	 √	√ Su vuiniu	Rocky
2	Chestnut-backed Sparrow-Lark	Eremopterixleucotis	Alaudidae		√	\checkmark
3	Crested Lark	Galerida cristata	i muunuut		\checkmark	√
4	Flappet Lark	Mirafrarufocinnamomea			\checkmark	\checkmark
5	Sun Lark	Galerida modesta		\checkmark	√	\checkmark
6	African Pygmy Kingfisher	Ispidina picta	Alcedinidae	· ✓	✓	✓
7	Blue-breasted Kingfisher	Halcyon malimbica	Alceutiliuae	· ✓	·	•
8	•			• •	\checkmark	
9	Giant Kingfisher	Megaceryle maxima		↓	v	
	Grey-headed Kingfisher	Halcyon leucocephala		↓		
10	Malachite Kingfisher	Alcedo cristata		v √	\checkmark	
11	Pied Kingfisher	Ceryle rudis	A (* 1	↓	v √	
12	White-faced Whistling Duck	Dendrocygnaviduata	Anatidae	v	v √	\checkmark
13	Common Swift	Apus apus	Apodidae	\checkmark	v	v
14	African Palm-Swift	Cypsiurus parvus		\checkmark	/	
15	Cattle Egret	Bubulcus ibis	Ardeidae		\checkmark	
16	Green Heron	Butorides virescens		 ✓ 		,
17	Grey Heron	Ardea cinerea		\checkmark	,	\checkmark
18	Little Egret	Egretta garzetta			√	
19	White-backed Night-Heron	Gorsachiusleuconotus		\checkmark	\checkmark	
20	African Grey Hornbill	Tockus nasutus	Bucerotidae	\checkmark	\checkmark	\checkmark
21	Red-billed Hornbill	Tockuserythrorhynchus		\checkmark		
22	Yellow-billed Oxpecker	Buphagus africanus	Buphagidae	\checkmark	\checkmark	
23	Senegal Thick-knee	Burhinus senegalensis	Burhinidae		\checkmark	
24	Red-shouldered Cuckooshrike	Campephagaphoenicea	Campephagidae	\checkmark		\checkmark
25	African Wattled Lapwing	Vanellus senegallus	Charadriidae	\checkmark	\checkmark	\checkmark
26	Croaking Cisticola	Cisticola natalensis	Cisticolidae	\checkmark		
27	Grey-backed Camaroptera	Camaroptera brevicaudata	Clotheonidae	\checkmark	\checkmark	\checkmark
28	Oriole Warbler	Hypergerusatriceps		\checkmark	\checkmark	
29	Red-faced Cisticola	Cisticolaerythrops		\checkmark		
30	Red-winged Prinia	Heliolaiserythropterus		· ✓		
30				· ✓	\checkmark	./
	Rock-loving Cisticola	Cisticola aberrans		↓	↓	• ./
32	Senegal Eremomela	Eremomela pusilla		↓	v √	↓
33	Singing Cisticola	Cisticola cantans		v √	v √	•
34	Tawny-flanked Prinia	Prinia subflava	G 111 1	v √	✓ ✓	×
35	Speckled Mousebird	Colius striatus	Coliidae			v
36	Adamawa Turtle-Dove	Streptopeliahypopyrrha	Columbidae	 ✓ 	\checkmark	\checkmark
37	Black-billed Wood-Dove	Turturabyssinicus		 ✓ 		
38	Bruce's Green-Pigeon	Treron waalia		 ✓ 	,	,
39	Laughing Dove	Spilopelia senegalensis		\checkmark	\checkmark	√
40	Red-eyed Dove	Streptopeliasemitorquata		\checkmark	✓	✓
41	Speckled Pigeon	Columba guinea		\checkmark	\checkmark	\checkmark
42	Tambourine Dove	Turturtympanistria		\checkmark		
43	Vinaceous Dove	Streptopeliavinacea		\checkmark	\checkmark	\checkmark
44	Pied Crow	Corvus albus	Corvidae	\checkmark	\checkmark	
45	Dideric Cuckoo	Chrysococcyxcaprius	Cuculidae	\checkmark	\checkmark	
46	Klaas's Cuckoo	Chrysococcyxklaas			\checkmark	\checkmark
47	Red-chested Cuckoo	Cuculus solitarius		\checkmark	\checkmark	\checkmark
48	Senegal Coucal	Centropus senegalensis		\checkmark	\checkmark	\checkmark
49	Gosling's Bunting	Emberizagoslingi	Emberizidae	\checkmark	\checkmark	\checkmark
50	African Quailfinch	Ortygospizaatricollis	Estrildidae		\checkmark	\checkmark
51	Bar-breasted Firefinch	Lagonostictarufopicta		\checkmark	√	
52	Black-bellied Firefinch	Lagonosticta rara		✓	✓	
52 53		Estrilda troglodytes		*	✓	
	Black-rumped Waxbill	0		\checkmark	v √	./
54	Bronze Mannikins	Lonchura cucullata		v √	v	v
55	Grey-headed Oliveback	Nesochariscapistrata		✓ ✓	/	/
56	Lavendar Waxbill	Estrildacoerulescens			v	v /
57	Orange-cheeked Waxbill	Estrildamelpoda		v	\checkmark	√
58	Red-billed Firefinch	Lagonostictasenegala		\checkmark		√.
59	Red-cheeked Cordon-bleu	Uraeginthusbengalus		\checkmark	\checkmark	\checkmark
60	Rock Martin	Ptyonoprognefuligula		\checkmark	\checkmark	\checkmark
61	Rock Firefinch	Lagonostictasanguinodorsalis		\checkmark	\checkmark	\checkmark
62	Common Kestrel	Falco tinnunculus	Falconidae		\checkmark	\checkmark
		F 1 1			\checkmark	
63	Fox Kestrel	Falco alopex			•	

65	Lanner Falcon	Falco biarmicus		 ✓ 	\checkmark	\checkmark
66	Streaky-headed Seedeater	Crithagra gularis	Fringillidae	√	,	,
67	Yellow-fronted Canary	Crithagramozambica		\checkmark	 ✓ 	√
68	Fanti Sawwing	Psalidoprocne obscura	Hirundinidae	\checkmark	\checkmark	\checkmark
69	Lesser Striped Swallow	Cecropisabyssinica		\checkmark	,	,
70	Red-rumped Swallow	Cecropisdaurica		 ✓ 	√	✓
71	White-rumped Swallow	Tachycinetaleucorrhoa		 ✓ 	\checkmark	\checkmark
72	Greater Honeyguide	Indicator indicator	Indicatoridae	 ✓ 		,
73	Yellow-billed Shrike	Corvinella corvina	Laniidae	\checkmark	\checkmark	\checkmark
74	Brown Babbler	Turdoidesplebejus	Leiotrichidae	\checkmark		
75	Bearded Barbet	Lybius dubius	Lybiidae	\checkmark		√
76	Vieillot's Barbet	Lybiusvieilloti		√	~	1
77	Yellow-fronted Tinkerbird	Pogoniuluschrysoconus		\checkmark	\checkmark	~
78 70	Yellow-rumped Tinkerbird	Pogoniulus bilineatus	M	v √	v ✓	×
79 80	Northern Crombec Black-crowned Tchagra	Sylviettabrachyura Tchagrasenegalus	Macrosphenidae Malaconotidae	↓	↓	•
81	Brubru	Nilaus afer	Walaconotidae		\checkmark	
82	Northern Puffback	Dryoscopusgambensis		\checkmark		
83	Sulphur-breasted Bushshrike	Telophorussulfureopectus		\checkmark	\checkmark	
84	Tropical Boubou	Laniarius aethiopicus		\checkmark	\checkmark	\checkmark
85	Yellow-crowned Gonolek	Laniariusbarbarus		\checkmark	\checkmark	\checkmark
86	Little Bee-eater	Merops pusillus	Meropidae	\checkmark	\checkmark	\checkmark
87	African Paradise-Flycatcher	Terpsiphoneviridis	Monarchidae	\checkmark		\checkmark
88	Yellow-throated Longclaw	Macronyx croceus	Motacillidae			\checkmark
89	Common Wattle-eye	Platysteira cyanea	Muscicapidae	\checkmark	\checkmark	
89 90	Familiar Chat	Oenanthe familiaris	muscicapiuae	v √	↓	\checkmark
		5		↓	↓	•
91	Mocking Cliff Chat	Thamnolaeacinnamomeiventris		↓	↓	v √
92	Northern Black-Flycatcher	Melaenornisedolioides		\checkmark		v
93	Pale Flycatcher	Melaenornis pallidus			 ✓ 	V,
94	Pied Flycatcher	Ficedula hypoleuca		\checkmark	✓	✓
95	Snowy-crowned Robin-Chat	Cossyphaniveicapilla		\checkmark	\checkmark	\checkmark
96	White-fronted Black-Chat	Oenanthe albifrons			\checkmark	
97	Violet Turaco	Musophaga violacea	Musophagidae	\checkmark	\checkmark	\checkmark
98	Western Grey Plantain-eater	Crinifer piscator	1 0	\checkmark	\checkmark	\checkmark
99	Beautiful Sunbird	Cinnyris pulchellus	Nectariniidae	\checkmark		
100	African Paradise-Flycatcher	Terpsiphoneviridis	Monarchidae	\checkmark		\checkmark
101	Copper Sunbird	Cinnyris cupreus	Wonaremdae	\checkmark		
101	Green-headed Sunbird	Cyanomitraverticalis		√	\checkmark	
		2		•	• •	./
103	Pygmy Sunbird	Hedydipnaplatura		\checkmark	↓	•
104	Scarlet-chested Sunbird	Chalcomitra senegalensis		v √	v √	v √
105	Variable Sunbird	Cinnyris venustus	~			×
106	Stone Patridge	Ptilopachuspetrosus	Odontophoridae	 ✓ 	\checkmark	√.
107	White-Shouldered Black Tit	Parus guineensis	Paridae	\checkmark		\checkmark
108	Northern Grey-Headed Sparrow	Passer griseus	Passeridae	\checkmark	\checkmark	
109	Black-capped Babbler	Pellorneumcapistratum	Pellorneidae	\checkmark		
110	Double-spurred Francolin	Pternistisbicalcaratus	Phasianidae	\checkmark	\checkmark	\checkmark
111	Green Wood Hoopoe	Phoeniculus purpureus	Phoeniculidae	\checkmark	\checkmark	
	Cardinal Woodpecker	Dendropicosfuscescens	Picidae	\checkmark	\checkmark	\checkmark
	Common Wattle-Eye	Platysteira cyanea	Platysteiridae	\checkmark	\checkmark	
114	Senegal Batis	Batis senegalensis	Thatysterridae	\checkmark		\checkmark
115	Black-necked Weaver	Ploceus nigricollis	Ploceidae	\checkmark	\checkmark	1
		0	1 IOCCIUde	v √	↓	
116	Black-winged Bishop	Euplecteshordeaceus		v √	v √	•
117	Chestnut-crowned Sparrow-Weaver					v
118		Ploceus luteolus		\checkmark	√	v
119	Northern Red Bishop	Euplectesfranciscanus		\checkmark	✓	\checkmark
120	Red-headed Weaver	Anaplectesrubriceps		 ✓ 	√	
121	Speckled-fronted Weaver	Sporopipes frontalis		\checkmark	\checkmark	\checkmark
122	Village Weaver	Ploceus cucullatus		\checkmark	\checkmark	\checkmark
123		Ploceus vitellinus		\checkmark		
124		Euplectes macroura		\checkmark		
125	Senegal Parrot	Poicephalussenegalus	Psittacidae	\checkmark	\checkmark	
126	•	Pycnonotus barbatus	Pycnonotidae	\checkmark	\checkmark	\checkmark
120	Yellow-throated Leaflove	Atimastillasflavicollis	i jenonotidae	· ✓	· ✓	✓
			Damphastides	v √	↓	
128	Yellow-fronted Tinkerbird	Pogoniuluschrysoconus	Ramphastidae	v √	v √	• ./
129	Yellow Penduline Tit	Anthoscopusparvulus	Remizidae	◆ ✓	✓ ✓	v
130	Hamerkop	Scopus umbretta	Scopidae	\checkmark	\checkmark	
131	African Blue Flycatcher	Elminia longicauda	Stenostiridae		v	
132	Long-tailed Glossy Starling	Lamprotornis caudatus		\checkmark	,	
133	Neumann's Starling	Onychognathusneumanni		\checkmark	\checkmark	\checkmark
134	Purple Glossy Starling	Lamprotornis purpureus		\checkmark	\checkmark	\checkmark
135		Cinnyricinclus leucogaster		\checkmark		\checkmark
	Moustached Warbler	Melocichla mentalis	Sylviidae	\checkmark	\checkmark	\checkmark
136		Sylvia borin	•	\checkmark	\checkmark	\checkmark
	Garden Warbler					
137	Garden Warbler Willow Warbler	5			\checkmark	\checkmark
137 138	Willow Warbler	Phylloscopus trochilus	Turdidae	\checkmark	\checkmark	\checkmark
137 138 139	Willow Warbler African Thrush	Phylloscopus trochilus Turdus pelios	Turdidae Viduidae	\checkmark	\checkmark	\checkmark
137 138 139 140	Willow Warbler African Thrush Jos Plateau Indigobird	Phylloscopus trochilus Turdus pelios Viduamaryae	Turdidae Viduidae		\checkmark	\checkmark
136 137 138 139 140 141 142	Willow Warbler African Thrush	Phylloscopus trochilus Turdus pelios		✓ □	\checkmark	

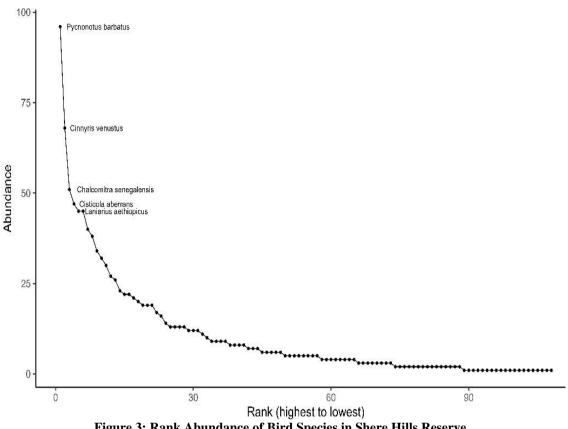


Figure 3: Rank Abundance of Bird Species in Shere Hills Reserve

Abundance for bird species in Shere Hills Reserve

Figure 3 revealed the first five species that ranked the highest in the rocky habitat which includes: Pycnonotus barbatus- Common Bulbul (96), Cinnyris venustus-Variable Sunbird (68), Chalcomitra senegalensis-Scarlet-chested Sunbird (51), Cisticola aberrans- Rockloving Cisticola (47) and Laniarius aethiopicus-Tropical Boubou (45).

Bird abundance did not differ across the various habitat-types ($F_{2, 585} = 0.59$, p = 0.56), Fig. 4. However, bird diversity was relatively higher in the Savanna (1.92 \pm 0.03) and Gallery forest (1.91 \pm 0.03) while the rocky outcrop harbored the least bird diversity (1.87 ± 0.03) .

The Common Bulbul, Variable Sunbird, and Scarletchested Sunbird were the most frequently observed species across all habitat types, highlighting their role as generalist avian species in the Shere Hills Reserve. These species play critical ecological roles, with the Variable and Scarlet-chested Sunbirds acting as active pollinators, while the Common Bulbul contributes to seed dispersal and ecosystem regeneration in degraded areas. As a widely distributed omnivore, the Common Bulbul consumes various fruits and invertebrates, thriving in wooded and bushy habitats except in unbroken forests, open grasslands, and treeless deserts [29, 22].

The dominance of nectarivorous and frugivorous species underscores their importance in restoring degraded ecosystems. This finding aligns with [30], who observed that diverse habitats support generalist

species capable of thriving in various environments, including urban and protected landscapes. Their ability to thrive in various habitats highlights their strength and importance, in the ecosystem [27]. Their adaptability and ecological contributions emphasize the need for conservation efforts to prioritize resources that sustain these dominant species, as they are essential for maintaining ecosystem functions across all habitat types.

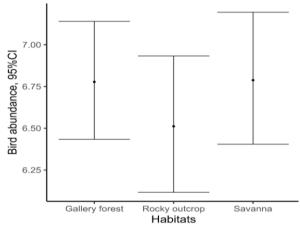


Figure 4: Bird abundance in habitat types found in **Shere Hills Reserve**

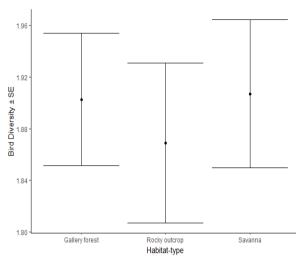


Figure 5: Bird diversity across the habitat types found in Shere Hills Reserve

Bird diversity across habitat types in Shere Hills

Bird diversity did not significantly differ across the various habitat-types ($F_{(2, 585)} = 0.4682$, p = 0.63) as shown in Fig. 5. However, bird diversity was relatively higher in the savanna (1.91 ± 0.03) compared to the gallery forest (1.90 ± 0.03) while the rocky outcrop haboured the least bird diversity (1.87 ± 0.03).

Shere Hills Reserve supports diverse bird species across its mixed habitat types; savanna, gallery forest, and rocky outcrops, despite their structural differences and varying resource availability. The savanna showed slightly higher diversity, possibly due to its blend of open and sheltered resources that attract a variety of species [32]. The gallery forest, with its dense vegetation and water availability, also exhibited high diversity, while the rocky outcrop had lower diversity due to its limited resources, which constrain bird activities such as foraging and nesting [33]. Despite these differences, all habitats contribute uniquely to the overall bird diversity of the area.

Bird mobility and habitat interconnectivity influence resource use, with birds utilizing multiple habitats for food, shelter, and breeding. The study noted that degraded areas, such as rocky outcrops and fringe gallery forests, still hold conservation value by supporting unique species. This aligns with findings by [34, 35], which emphasize the conservation potential of multi-use landscapes alongside strictly protected areas.

The observed species richness and habitat preferences underscore the importance of habitat selection based on birds' needs for food, shelter, and reproduction [36]. Specific species were found only in particular habitats, highlighting the influence of habitat structure on avian diversity [37]. The study agrees with [38, 39] in demonstrating the utility of bird populations and their habitats as indicators for environmental monitoring and conservation planning.

Overall, Shere Hills' diverse and interconnected habitats collectively support a stable bird population. Conserving all habitat types is critical to maintaining this balance and supporting both common and rare bird species.

Conclusion

This study highlights the significance of habitat heterogeneity in sustaining avian biodiversity within Shere Hills Reserve, Plateau State. The diversity of bird species across the gallery forest, savanna, and rocky outcrop habitats emphasizes the critical role these ecosystems play in maintaining ecological balance and supporting a wide range of avian life. Although gallery forests exhibited the highest species composition, all three habitats contributed unique species, showcasing the complementary value of varied habitat types.

The lack of significant variation in bird diversity and across habitats suggests abundance that the interconnectedness of these ecosystems is vital for avian conservation. These findings provide а foundation for future biodiversity assessments and emphasize the need for strategies to preserve the integrity of these habitats, ensuring the continued survival of bird populations and the ecological services they provide in Shere Hills Reserve.

Conflict of interest: The authors declare that there is no conflict of interest regarding the publication of this research.

Acknowledgments: We would like to express our sincere gratitude to the A.P. Leventis Ornithological Research Institute (APLORI), Plateau State, Nigeria, for their partial funding, which was instrumental in the success of this research. We also extend our heartfelt appreciation to the colleagues from the Department of Zoology, University of Jos, for their unwavering support throughout the course of this study. Their valuable contributions played a crucial role in the successful completion of this work.

References

- Whelan, C. J., Şekercioğlu, Ç. H. & Wenny, D. G. (2015). Why birds matter: from economic ornithology to ecosystem services. *Journal of Ornithology*, 156, 227-238. https://doi.org/10.1007/s10336-015-1229-y
- Wenny, D. G., Devault, T. L., Johnson, M. D., Kelly, D., Sekercioglu, C. H., Tomback, D. F. & Whelan, C. J. (2011). The need to quantify ecosystem services provided by birds. *The auk*, 128(1), 1-14. https://doi.org/10.1525/auk.2011.10248
- [3] García, D., Rumeu, B., Illera, J. C., Minarro, M., Palomar, G. & González-Varo, J. P. (2024). Common birds combine pest control and seed dispersal in apple orchards through a hybrid interaction network. *Agriculture, Ecosystems* & *Environment*, 365, 108927. https://doi.org/10.1016/j.agee.2024.108927
- [4] Anderle, M., Brambilla, M., Angelini, L., Guariento, E., Paniccia, C., Plunger, J. & Hilpold, A. (2024). Efficiency of birds as bioindicators for other taxa in mountain farmlands. *Ecolog. Indicators*, 158, 111569. https://doi.org/10.1016/j.ecolind.2024.111569

- [5] Magaña-Olivé, P., Cunill-Flores, J. M., Martínez-Tavera, E., Jiménez-Juárez, N., Horta-Valerdi, G. M., Cuellar-Sánchez, A. & Suresh-Babu, S. (2024). Non-invasive methodology for the ecotoxicological sampling of anatids in urban and peri-urban areas. *Brazilian J. of Animal and Environmental Res.*, 7(2), e69286-e69286. https://doi.org/10.34188/bjaerv7n2-048
- [6] Rong, A., Besra, S., Chatterjee, L., Samanta, T., Mazumdar, S., Hazra, D. & Roy, A. B. (2023). A comprehensive study on diversity and land use of the bird species around Eco Park Area, Kolkata, West Bengal. Research Square. https://doi.org/10.21203/rs.3.rs-3503617/v1
- [7] De Camargo, R. X. (2023). Avian diversity responds unimodally to natural landcover: Implications for conservation management. Animals, 13(16), 2647. https://doi.org/10.3390/ani13162647
- [8] Yilma, Z. A., Mengesha, G. & Girma, Z. (2024). Species composition, relative abundance, and habitat association of birds in Dodola dry evergreen afro-montane forest and sub-afroalpine scrubland vegetation, southeast Ethiopia. *PeerJ*, *12*, e16775. https://doi.org/10.7717/peerj.16775
- [9] Davison, C. W., Assmann, J. J., Normand, S., Rahbek, C. & Morueta-Holme, N. (2023). Vegetation structure from LiDAR explains the local richness of birds across Denmark. *Journal of Animal Ecology*, 92(7), 1332-1344. https://doi.org/10.1111/1365-2656.13945
- [10] Neumann, L. K., Fuhlendorf, S. D., Davis, C. A. & Wilder, S. M. (2022). Climate alters the movement ecology of a non-migratory bird. *Ecology and Evolution*, 12(4), e8869. https://doi.org/10.1002/ece3.8869
- [11] Saracco, J. F., Cormier, R. L., Humple, D. L., Stock, S., Taylor, R. & Siegel, R. B. (2022). Demographic responses to climate-driven variation in habitat quality across the annual cycle of a migratory bird species. *Ecology and Evolution*, 12(6), e8934. https://doi.org/10.1002/ece3.8934
- [12] Callaghan, C. T., Chase, J. M. & McGlinn, D. J. (2023). Anthropogenic habitat modification causes nonlinear multiscale bird diversity declines. *Ecography*, e06759. https://doi.org/10.1111/ecog.06759
- [13] Ramm, K., Brown, C., Arneth, A. & Rounsevell, M. (2024). Human pressure on global land ecosystems and biodiversity increases notably from 1990-2020-Development of a spatially explicit Biodiversity Pressure Index (BPI) (No. EGU24-5708). Copernicus Meetings. https://doi.org/10.5194/egusphere-egu24-5708
- [14] Game, E. T., Kareiva, P. & Possingham, H. P. (2013). Six common mistakes in conservation priority setting. *Conservation Biology*, 27(3), 480-485. https://doi.org/10.1111/cobi.12051

- Bruner, A. G., Gullison, R. E., Rice, R. E. & Da Fonseca, G. A. (2001). Effectiveness of parks in protecting tropical biodiversity. *Science*, 291(5501), 125-128. DOI: 10.1126/science.291.5501.125
- [16] Muhammad, S. I., Ramli, R. & Then, A. Y. (2018). Seasonality, habitat type and locality influenced bird assemblage structure in Nigeria. Ostrich, 89(3), 221-231. https://doi.org/10.2989/00306525.2018.1425927
- [17] Singh, V. (2024). Threats to Biodiversity. In: *Textbook of Environment and Ecology* (pp. 217-224). Singapore: Springer Nature Singapore.
- [18] Olowolafe, E. A. (2002). Soil parent materials and soil properties in two separate catchment areas on the Jos Plateau, Nigeria. *GeoJ*, 56, 201-212. https://doi.org/10.1023/A:1025158121610
- [19] Hulme, M. F. (2007). The density and diversity of birds on farmland in West Africa (Doctoral dissertation, University of St. Andrews). https://hdl.handle.net/10023/424
- [20] Bibby, C. J. (2000). Bird Census Techniques. Elsevier.
- [21] Sutherland, W. J., Newton, I. & Green, R. E. (2004). Bird Ecology and Conservation: A Handbook of Techniques. Oxford Univ. Press. https://doi.org/10.1093/acprof:oso/978019852 0863.001.0001
- [22] Borrow, N. & Demey, R. (2014). Birds of Western Africa. Princeton University Press. Princeton Field Guides, 96, 592pp.
- [23] Kumdet, P. S., Ivande, S. T. & Dami, F. D. (2021). Key drivers of avifauna in green space of institutional campuses in a state in Western Africa. Urban Forestry & Urban Greening, 61, 127092. https://doi.org/10.1016/j.ufug.2021.127092
- [24] Jost, L. (2007). Partitioning diversity into independent alpha and beta components. *Ecology*, 88, 2427–2439. https://doi.org/10.1890/06-1736.1
- [25] R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
- [26] Remeš, V., Harmáčková, L., Matysioková, B., Rubáčová, L. & Remešová, E. (2022). Vegetation complexity and pool size predict species richness of forest birds. *Frontiers in Ecology and Evolution*, 10, 964180. https://doi.org/10.3389/fevo.2022.964180
- [27] Peacock, J., Macleod, R., Davies, G. M., Boorsma, T. & Tonra, C. M. (2024). Habitat Selection of Three Neotropical Grassland Birds Is Dependent on Vegetation Structure and Resources. *Diversity*, 16(4), 229. https://doi.org/10.3390/d16040229
- [28] Ciach, M., & Kowalski, F. (2016). Birds in rocky habitats of the Tatra Mountains (Carpathians): Species diversity and multiple ecological relationships. J. of Mountain Sci., 13(6), 1078-1084. https://doi.org/10.1007/s11629-015-3752-y

- [29] Shanahan, D. F., Miller, C., Possingham, H. P. & Fuller, R. A. (2011). The influence of patch area and connectivity on avian communities in urban revegetation. *Biological Conservation*, 144(2), 722-729. https://doi.org/10.1016/j. biocon.2010.10.014
- [30] Shome, A. R., Rabbe, M. F., Jaman, M. F., Khan, N., Islam, M. A. & Alam, M. M. (2024). Protected landscape with natural habitat inside urban area could conserve avifauna biodiversity: A long-term study from an overpopulated subtropical megacity. *Research Square*. https://doi.org/10.21203/rs.3.rs-4733401/v1
- [31] Schowalter, T. D. (2008). Insect herbivore responses to management practices in conifer forests in North America. *Journal of Sustainable Forestry*, 26(3), 204-222. https://doi.org/10.1080/10549810701879727
- [32] Sankaran, M., Ward, D., Moustakas, A., Wiegand, K. & Meyer, K. M. (2010). Learning new tricks from old trees: Revisiting the savanna question. *Frontiers of Biogeography*, 2(2). DOI: 10.21425/F5FBG12335
- [33] Michael, D. & Lindenmayer, D. (2018). Rocky outcrops in Australia: ecology, conservation and management. Csiro Publishing.

- [34] Hostetler, M. E. & Archer, J. M. (2017). Building for Birds Evaluation Tool: Assessing the Value of Residential Areas for Forest Birds: WEC373/UW418, 11/2017. EDIS, 6. https://doi.org/10.32473/edis-uw418-2017
- [35] Gardner, T. A., Ribeiro-Júnior, M. A., Barlow, J. O. S., Ávila-Pires, T. C. S., Hoogmoed, M. S. & Peres, C. A. (2007). The value of primary, secondary, and plantation forests for a neotropical herpetofauna. *Conservation Biology*, 21(3), 775-787. https://doi.org/10.1111/j.1523-1739.2007.00659.x
- [36] Cody, M. L. (Ed.). (1985). *Habitat selection in birds*. Academic press.
- [37] Roth, R. R. (1976). Spatial heterogeneity and bird species diversity. *Ecology*, 57(4), 773-782. https://doi.org/10.2307/1936190
- [38] Canterbury, G. E., Martin, T. E., Petit, D. R., Petit, L. J. & Bradford, D. F. (2000). Bird communities and habitat as ecological indicators of forest condition in regional monitoring. *Conservation Bio*, 14(2), 544-558. https://doi.org/10.1046/j.1523-1739.2000.98235.x
- [39] Rodríguez-Ferraro, A. & Blake, J. G. (2008). Diversity patterns of bird assemblages in arid zones of northern Venezuela. *The Condor*, 110(3), 405-420. https://doi.org/10.1525/cond.2008.8521

Citing this Article

Kambai, C. Dami, D. F. & Chaskda, A. A. (2025). Bird species composition, abundance and diversity across habitat types in Shere Hills Reserve, Plateau State, Nigeria. *Lafia Journal of Scientific and Industrial Research*, 3(1), 81 – 89. https://doi.org/10.62050/ljsir2025.v3n1.387