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Developing and implementing age dependent mortality rates in functional 

forms have presented critical modelling problems for life insurance and annuity 

firms; thereby creating serious research gaps. A recurring problem with the 

existing life tables is that their underlying generating functions are not capable 

of showing any evidence that mortality at 10 declines. This observed 

irregularity in the age pattern of mortality is the prime motivation in the search 

for analytical functions which fully capture the observed variations of mortality 

with age. To fill the gaps identified, the study aims to develop specific life table 

function under the Generalised Makeham’s framework. The objectives of this 

study are to (i) compute the mortality rate intensities μx (ii) compute the curve 

of deaths densities lxμx (iii) compute the probability of deaths xq and then 

compare the common domain of definition of these measures. From the method 

of successive differencing employed to model GM (2,2), the male’s ageing 

parameter value 1.102923606 falls within the globally accepted interval 

1.08C1.12 for the GM (2,2). This method is superior to the method of 

maximum likelihood estimation which mostly violates the permissible interval 

of validity. Computational evidence from our analysis proves that under the 

Generalised Makeham’s law, the mortality rate intensity declines at 10. 

Keywords: 
Generalised Makeham, curve of deaths, permissible interval, 

successive differencing 
 

 

Introduction 

Life insurance which payments are either contingent on 

death or survival concerns every individual especially 

the working population who are automatically covered 

while in service by reason of the government’s social 

security program but who will possibly choose life 

annuity options at retirement. In actuarial context, it is 

essential to observe that life tables are used to measure 

the pattern of deaths, survival rates, life expectancy at 

varying ages in order to explain changes in the 

population.  

In order to price life insurance and annuity products and 

ensure the solvency of insurance companies, estimates 

of future events such as deaths are functionally 

formulated using mortality models to generate life 

tables. For life offices, any potential deviation from 

mortality assumption employed in pricing at the 

inception of the contract will constitute clear threats to 

its underwriting performance.It has been observed that 

many life insurance providers in developing countries 

such as Nigeria depend on exotic life tables which are 

incorrectly applied to overcharge or undercharge their 

policyholders. If they undercharge, many claims are 

reported and life insurance products are underpriced 

leading to the risk of insurer’s insolvency or if they 

overcharge, workers will suffer inadequate income 

streams at retirement. 

Developing and implementing age dependent mortality 

rates in functional forms have presented critical 

modelling problems for life insurance and annuity 

firms; thereby creating serious research gaps. A 

recurring problem with the existing life tables is that 

their underlying generating functions are not capable of 

measuring perinatal mortality and there is no evidence 

that mortality at 10 declines. These observed 

irregularities in the age pattern of mortality are the 

prime motivation in the search for analytical functions 

that fully capture the observed variations of mortality 

with age. To fill the gaps identified, the study aims to 

develop specific life table function under the 

frameworks of Generalised Makeham’s force of

mortality.

The basic data input required for generating life tables 

are the age specific death rates enumerated from the 

information on deaths from vital statistics (using age 

and sex) and population lx  
by age and sex. In most 

developing countries such as Nigeria, these data do not 

exist because of dysfunctional vital registration system.

The most popular law of mortality stated in Gompertz's 

law [1] was developed to model old age mortality 

around  60 - 90 years  and assumes that death rates in-

crease exponentially at old age.
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Following observation by Debon et al. [2], the 

Generalized Makeham’s mortality function in equation

(1) is defined to measure mortality from infancy to old 

ages.

  1 1

1 1

, exp
m m n

k k m

x k k

k k m

GM m n x x  


  

  

     (1) 

where m  and n  are non-negative integers representing 

the orders of the polynomials and k are mortality 

parameters. Because of the complexity involved in 

evaluating the parameters as both orders increase, m 

and n are constrained in practice as m  n  5 . This 

equation has implications for m  and n . When m  0  
and n  0 , we obtain the following equations;
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Consequently, mortality at zero 0  is inadmissible. 

Therefore, in order to absorb the Gompertz’s 

assumption and fall in line with actuarial practice, the 

undefined terms 0

x


and m

x


 at age zero are ignored 

and the equations are modified as follows; 
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  (4) 

If m  0,n  2 , we have the Gompertz’s law

x GM 0,2  BC x ; 60  x  90  where B  is 

the initial mortality, C is the ageing parameter and x 
is the age. This mortality law is not capable of 

capturing infant mortality rates and mortality due to 

accidents in young adulthood (accidental hump). This is 

because exponential mortality growth rate is not 

expected before sexual maturity.

The relatively few parameters in [1] makes it inflexible 

consequently, the author in [3] assumes a constant addi-

tive age-independent constant parameter that accounts 

for the accidental hump mortality. If m 1,n  2 in 
equation (4) the Makeham’s mortality function becomes

x GM 1,2  ABC x ; 20  x  90  (4a) 

where A defines the background mortality independent 

of age [4]. The assumption of constant mortality rate is 

not always true since we all have different mortality 

exposures due to different life styles, nutrition, job and 

environment.

To capture mortality at low ages and extreme ages from 

this law, mortality rates are then extrapolated because 

of insufficient mortality experience. Since there is an 

approved range of validity where the mortality function 

is well behaved, best mortality estimates outside the 

intended range may not be obtained by extrapolation. In 

order to avoid the need to extrapolate, we can set 

m  2,n  2  in (4) to obtain the Generalized

Makeham’s law  2,2 x

x GM A Hx BC      

where H R is a new parameter which explains 

changes in the background mortality. It is natural for 

mortality to decline at ten to explain changes in 

mortality between conception and death. The 

Heligman-Pollard mortality law of the form 

  
1

exp
k

m

x k k k k

k

a b f x c





   
   was developed 

to decompose mortality according to three stages of life 

where the constants  , , ,k k k ka b c  are mortality 

parameters and   lnkf x x  or  kf x x
 

[2]. 

However, the major problem currently is that, the 

generating survival function, the probability of survival 

function and the hazard rate functions have not been 

developed as a result of the emerging analytical 

intractability of the force of mortality function and this 

accounts for the reason why its associated life insurance 

monetary functions have not been developed till date.  

Since mortality intensity evolves in continuous time, a 

basic functional representation of mortality risks is the 

severity to die function which defines the aggregate 

death severity that a life is exposed to over time. 

Consequently, the probability that a life survives to an 

age is the exponentiated negative severity to die 

function within an arbitrarily closed time interval.    

A sound knowledge of mortality intensity could be 

applied to measure:  (i) the severity to die function

x tdt
 R  (ii) the survival probability function t xp  

(iii) the curve of death x xl  of an insured life all 

applicable to carry out actuarial valuations in life 

insurance schemes. Thus all life contingent events 

represent direct application of numerical techniques in 

computing life table functions to ensure cost effective 

approximations. 

Actuaries are required to conduct precise mortality 

estimations using the appropriate numerical technique 

since valuation of life insurance schemes depend 

heavily on both mortality rate and interest rate 

intensities when performing actuarial valuations on life 

insurance and pension schemes.  
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The inability to conduct accurate mortality results will 

expose life insurance companies to unforeseen risk of 

insolvencies. Since insurance, annuity and pension 

funds heavily depend on life tables when conducting 

actuarial valuations for policies and premium 

computations, there is a dire need for accurate and 

reliable mortality tables.  

Grave concern in actuarial practice is the estimation 

problem relating to nonlinear mortality intensities that 

have been functionally formulated to obtain life 

insurance products. In related studies in [5, 6] it was 

observed that the uniform distribution of deaths 

interpolation   11x t x xl t l tl     has been 

specifically developed to solve most mortality 

estimation problems and expedite computational 

convenience while inadvertently trading off 

mathematical accuracy and consistencies. As a result, 

the same number of lives xl at age x is expected to die 

periodically and because of this assumption, the authors 

applied the linear interpolation to estimate non-linear 

mortality functions in all actuarial computations but 

were unaware that the survival function
K

xl C . 

From the foregoing, the following observations are 

evident: (i) Mortality functions based on linear 

interpolation are not analytically consistent with each 

other such that same mortality functions would mean 

different approximations between integral ages. (ii) 

Because of the identified functional inconsistencies, it 

can no longer be reasonably assumed that linear 

interpolation assumption is competent to estimate non-

linear mortality functions. (iii) The assumption may not 

always be acceptable to a larger extent because equal 

number of lives cannot be assumed to die periodically. 

(iv) The second and higher derivatives of the survival 

function xl would be zero and hence renders the 

applications of both Taylor’s and Euler-Maclaurin’s 

series to mortality estimations inapplicable.  

Arguably, further evidence of inconsistent mortality 

computations emerged in [7, 8] that the uniform 

distribution of death through linear interpolation 

assumption over which actuarial computations are 

currently based may no longer be adequate for many 

life insurance applications. Unknown in mathematics 

literature, some workers [9, 10] foresaw this problem in 

advance and constructed an interpolation resulting in 

mortality matrices which can be applied to model 

mortality rate intensity. 

The deep investigation in [8] leading to the discovery of 

key computational deficiencies of linear interpolation 

was carried out to expose the inconsistencies in linear 

interpolation mortality assumption. The inadequate rate 

of mortality computations used in life insurance pricing 

and in mortality assumptions poses a serious challenge 

to life insurance operations. Unfortunately actuaries do 

not seem to observe this potential threat ahead and life 

insurance regulators similarly are being myopic of the 

possible dire consequences on the industry. The rising 

waves of research gaps therefore constitute critical 

concerns for life office to the extent that if they are not 

reasonably contained immediately can lead to 

insolvencies of life offices. 

Let xl  be a strictly decreasing function of real age such 

that if x y then x yl l , the reason for this is that the 

insured lives must always die at an instant. 

(ii) The number of deaths between ages x and 1x  is 

defined as 1x x xd l l   . Since xl  is strictly 

decreasing, 0l   as no life exists towards the end of 

mortality table. The radix 
0l  is the number of insured 

surviving at beginning of the mortality table.  

 

Differential equation governing the force of 

mortality x  at an instant 

According to [7, 11 – 14], the ratio of  
xdl

d








 

to xl   

at age x  and time   represents the mortality rate 

intensity. The ratio is the instantaneous force of 

mortality 

0
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


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Integrating (7) from age 0  to age x , we obtain 

0 0

x x

x x xdl l d   
 

       (8) 

0
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



  
        (9) 

Recall that  0l   as no live survives at highest age 

  in the mortality table. 

0

x

x x x x xl l l d  


        (10) 

The survivor’s function at an arbitrary age x is then 

obtained as 

0

x

x x xl l d  


      (11) 

Now, evaluating (9) from age 0  to age 1  and applying 

condition (ii) above 
1 1

1

10
0 0

x x x x x x xl l d l l l d            
          

  

(12) 
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The number of deaths between ages x and 1x is 

obtained as 
1

0

x x xd l d        (13) 

Again, evaluating (9) from age 0  to age   we have 

0
0 0

x x x x x x xl l d l l l d

 


             
             (14) 

The probability that a life aged x  dies before reaching 

age x  years is obtained by dividing (14) by xl  

 
0 0

x

x x x x

x

l
q d p d

l

 


      


       (15) 

The severity to die is the hazard function 

 
0

x xh d



     obtained by integrating both sides 

of (6) from time 0  to age  ,  
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 
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0

ln x xp d


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The probability that a life aged x  survives to the next 

age  x  years becomes 

 
0

expx xp d



  

 
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 
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as   in the result above,   0xp   and the 

integral 

0

ln 0x d 
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as 0  ,   1xp   and the integral 
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    . Therefore the function  xh t  

satisfies the conditions that  
0
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



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



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The integral in equation (19) has the property that  
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Letting x u   , the survival probability becomes; 
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 (19b) 

Differentiating the survival function (19) partially with respect to t , we obtain death density 
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t t

x x

x
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   (20) 

 

Therefore, from the arguments above, we state 

unequivocally the following results  
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Applying L’Hopital’s rule, equation (21) becomes 

 
0

0

ln
lim sx

s x x s

d l d
e p ds

dx d















   
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 
0

ln
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x x x
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e p

dx



 


 


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     (23) 

The distribution and the complementary functions of  

xT  are    
0

x x

s

T TF s f d    and 

   1
x xT TS s F s     (24) 

However, in [15, 16], the continuous death density is in 

other words defined as  

   
xT s x

d
f s q

ds
   (25) 

The distribution of xT  can be actuarially expressed as 

   
xT x s xF s T s q  P   (26) 

and 

   
xT xS s T s P    (27) 
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Materials and Methods 

The method of severity to die function 

The severity to die in form integrated hazard function is 

required to model the probability of survival function. 

In order to account for increase in background 

mortality, we set 2m   and 2n   in (4) to obtain the 

mortality function (28a) where , , ,A B C H are 

mortality parameters satisfying law of parsimony 

(Occam’s razor) 
x

x A Hx BC       (28a) 

Integrating both sides of (28a) from zero to an arbitrary 

age x  of the insured to obtain the severity to die 

function, we have 

 
0 0

x x

t

tdt A Ht BC dt       (28b) 
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In order to simplify (28d), we use the following 

transformations 
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Substituting the transformations in (28e) into (28d) we 

obtain; 
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Simplifying (28f), we have 
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 
2

0

log log log log
x

x

x x C

e e e et dt s W g g          (28i) 

 

The survival probability function is given by  

0

exp

t

x t
t x x

x

l
p d

l
 


 
   

 
   (28j) 

In order to obtain the exponential function of the LHS 

in (28i), we set 0x   in (28j) as follows 

0

0

exp

t

t p d 
 

  
 
    (28k) 

0

0

exp

t

tl l d 
 

  
 
    (28l) 

The subscript t  in (28j) is an arbitrary age and 

consequently, we replace t  by insured’s age x  

0

0

exp

x

x tl l dt
 

  
 
    (28m) 

 

Substituting (28i) into (28m) and have 

2 2
log log log log log log log log

0 0

x xx x C x x C
e e e e e e e e

s W g g s W g g

xl l e l e

                    
  

(28n) 

 

Simplifying (28n) and obtain 

 
2

2log

0 0

xx x C

x
e

s W g
x x C

g

x

s W g
l l e l

g

  
  
  

     (28o) 

The number of lives surviving to age x is given as 

2 2
0 0;

x xx x C x x C

x

l l
l s W g Ks W g K

g 
 

g 
 (28p)

Taking logarithms of (28p) and have

log log log x log x2 

log Cx

e x e e e el K s W g   
 
(29) 

 

       2log log log log logx

e x e e e el K x s x W C g   
 
(30) 
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We need to obtain the values of   ; ; ;A B E F   

first, hence we use another transformation 

Let   

log ; log ; log ; log ; loge x e e e eY l A K B s E W F g     (31) 

Then  

; ; ; ;Y A B E F

xe l e K e S e W e g           (32) 

2 2x xA Bx Ex FC A Bx Ex FC

xl e e e e e           (33) 

Putting (31) in (30) and obtain 
2 xY A Bx Ex FC            (34) 

 

substituting arbitrary five ages  

 

1 2 3 4 5, , , ,x x x x x in(34) and using equal step lengths 

2 1 3 2 4 3 5 4x x x x x x x x h        , we have, 

2 1 3 1 4 1 5 1; 2 ; 3 ; 4x x h x x h x x h x x h       
  

 (35) 

12

1 1 1

xY A Bx Ex FC      (36) 

22

2 2 2

xY A Bx Ex FC      (37) 

32

3 3 3

x
Y A Bx Ex FC      (38)  

42

4 4 4

xY A Bx Ex FC      (39) 

52

5 5 5

x
Y A Bx Ex FC      (40) 

Subtracting (36) from (37) 

 

 

 2 12 2

1 2 1 2 2 1 1

x xY Y Y A Bx Ex FC A Bx Ex FC             (41) 

2 12 2

1 2 2 1 1

x xY A Bx Ex FC A Bx Ex FC             (42) 

     2 12 2

1 2 1 2 1

x xY B x x E x x F C C           (43) 

      2 1

1 2 1 2 1 2 1

x xY B x x E x x x x F C C           (44) 

Substituting 2x  defined in (35) into (44) we have 

   1

2 1 12 1x hY Y hB hE x h FC C           (45) 

Taking second difference between (38) and (37) 

 3 22 2

2 3 2 3 3 2 2

x xY Y Y A Bx Ex FC A Bx Ex FC             (46) 

     3 22 2

2 3 2 3 2

x xY B x x E x x F C C           (47) 

    3 2

2 3 2 3 2

x xY hB E x x x x F C C           (48) 

Following same procedure as before and substitute for 3x  defined in (35) 

   1 12

2 1 12 x h x hY hB hE x h x h F C C             (49) 

   1

3 2 12 3 1x h hY Y hB hE x h FC C          (50) 

Taking third difference using (38) and (39) and substitute for 4x  

 342 2

3 4 3 4 4 3 3

xxY Y Y A Bx Ex FC A Bx Ex FC             (51) 

   1 13 2

3 1 13 2 x h x hY hB hE x h x h F C C            (52) 

   1 2

4 3 12 5 1x h hY Y hB hE x h FC C           (53) 

Taking fourth difference using (39) and (40) and substitute for 5x  

 5 42 2

4 5 4 5 5 4 4

x xY Y Y A Bx Ex FC A Bx Ex FC              (54) 

     5 42 2

4 5 4 5 4

x xY B x x E x x F C C           (55) 

      5 4

4 5 4 5 4 5 4

x xY B x x E x x x x F C C           (56) 

   1 14 3

4 1 14 3 x h x hY hB hE x h x h F C C            (57) 

   1 3

5 4 12 7 1x h hY Y hB hE x h FC C          (58) 
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subtracting (45) from (50) and obtain 

     
 

 
1

1

1

3 2 2 1 1

2
2 3 1

1

x h h

x h

hB hE x h
Y Y Y Y hB hE x h FC C

FC C


  
         
  
 

  (59) 

     

 

1

1

3 2 2 1 1 12 3 1 2

1

x h h

x h

Y Y Y Y hB hE x h FC C hB hE x h

FC C

          

 
   (60)  

       1 1

3 2 1 1 12 2 3 2 1 1x h xh hY Y Y hB hB hE x h hE x h FC C FC C             (61) 

 1
2

2

3 2 12 2 1x hY Y Y h E FC C             (62) 

Subtracting (50) from (53) and have 

     
 

 
1

1

12

4 3 3 2 1

2 3
2 5 1

1

x h h

x h h

hB hE x h
Y Y Y Y hB hE x h FC C

FC C





  
         
  
 

  (63) 

       

 

1

1

2

4 3 3 2 1 12 5 1 2 3

1

x h h

x h h

Y Y Y Y hB hE x h FC C hB hE x h

FC C





          

 
  (64) 

   

   1 1

4 3 2 1 1

2

2 2 5 2 3

1 1x h x hh h

Y Y Y hB hB hE x h hE x h

FC C FC C 

       

   
    (65) 

 1
2

2 2

4 3 2 1 12 2 5 2 3 1x h hY Y Y hEx h E hEx h E FC C           (66) 

 1
2

2

4 3 22 2 1x h hY Y Y h E FC C           (67) 

Subtract (53) from (58) and have 

     
 

 
1

1

13

5 4 4 3 1 2

2 5
2 7 1

1

x h h

x h h

hB hE x h
Y Y Y Y hB hE x h FC C

FC C





  
         
  
 

 (68) 

       

 

1

1

3

5 4 4 3 1 1

2

2 7 1 2 5

1

x h h

x h h

Y Y Y Y hB hE x h FC C hB hE x h

FC C





          

 
 (69) 

       

 

1

1

3

5 4 4 3 1 1

2

2 7 2 5 1

1

x h h

x h h

Y Y Y Y hB hB hE x h hE x h FC C

FC C





          

 
 (70) 

 1
2

22 2

5 4 3 1 12 2 7 2 5 1x h hY Y Y hEx h E hEx h E FC C           (71) 

 1
2

22

5 4 32 2 1x h hY Y Y h E FC C           (72) 

Subtract (62) from (67) and have 

      1 1
2 2

2 2

4 3 2 3 2 12 2 2 1 2 1x h xh hY Y Y Y Y Y h E FC C h E FC C           (73) 

   1 1
2 2

2 2

4 3 2 3 2 12 2 2 1 2 1x h xh hY Y Y Y Y Y h E FC C h E FC C            (74) 

 1
3

4 3 2 13 3 1x hY Y Y Y FC C            (75) 

Subtract (67) from (72) and obtain 

     1 1
2 2

22 2

5 4 3 4 3 22 2 2 1 2 1x h x hh hY Y Y Y Y Y h E FC C h E FC C            
  

(76) 

     1 1
2 2

22 2

5 4 3 4 3 22 2 2 1 2 1x h x hh hY Y Y Y Y Y h E FC C h E FC C             (77)  

   1 1
2 2

22 2

5 4 3 4 3 22 2 2 1 2 1x h x hh hY Y Y Y Y Y h E FC C h E FC C             (78) 

 1
3

5 4 3 23 3 1x h hY Y Y Y FC C            (79) 

Lafia Journal of Scientific & Industrial Research, 2(2) 



115 
 

combining equations (75) and (79) together again and have 

 

 

1

1

3

4 3 2 1

3

5 4 3 2

3 3 1

3 3 1

x h

x h h

Y Y Y Y FC C

Y Y Y Y FC C

     

     


       (80) 

 

Dividing the lower equation by the upper in system (80) to obtain the ageing parameter C  

5 4 3 2

4 3 2 1

3 3

3 3

h Y Y Y Y
C

Y Y Y Y

  


  
        (81) 

 

Setting (81) in (79) and have 

1 3

5 4 3 2 5 4 3 2
5 4 3 2

4 3 2 1 4 3 2 1

3 3 3 3
3 3 1

3 3 3 3

x h

hY Y Y Y Y Y Y Y
Y Y Y Y F

Y Y Y Y Y Y Y Y

 
                           

  (82) 

 

1 3

5 4 3 2 5 4 3 2 4 3 2 1
5 4 3 2

4 3 2 1 4 3 2 1

3 3 3 3 3 3
3 3

3 3 3 3

x h

hY Y Y Y Y Y Y Y Y Y Y Y
F Y Y Y Y

Y Y Y Y Y Y Y Y

 
                               

(83)  

 

1 3

5 4 3 2 5 4 3 2 1
5 4 3 2

4 3 2 1 4 3 2 1

3 3 4 6 4
3 3

3 3 3 3

x h

hY Y Y Y Y Y Y Y Y
F Y Y Y Y

Y Y Y Y Y Y Y Y

 
                            

 (84) 

 

1

5 4 3 2

3

5 4 3 2 5 4 3 2 1

4 3 2 1 4 3 2 1

3 3

3 3 4 6 4

3 3 3 3

x h

h

Y Y Y Y
F

Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y



  

 
          
            
  

    (85) 

 

Using the first equation in (62), we obtain 

 1
2

3 2 1

2

2 1

2

x hY Y Y FC C
E

h

   
        (86)  

 

Recall from (45) 

   1

2 1 12 1x hY Y hE x h FC C
B

h

    
      (87) 

 

Using equation (36), we have 

12

1 1 1

xA Y Bx Ex FC           (88) 
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 
1

1

1

2 1

3 2 1

2

5 4 3 2
1 2

3

5 4 3 2 5 4 3 2 1

4 3 2 1 4 3 2 1

5 4 3 2 5 4 3 2

4 3 2 1

2

2

1 3 3
2

2
3 3 4 6 4

3 3 3 3

3 3 4 6 4

3 3

x h

h

x

h

A Y

Y Y

h

Y Y Y

h

Y Y Y Y
x h

h
Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y

Y Y Y Y







 


 
 
 
   

    
                          
   

       
 

   

1

2

1

4 3 2 1

5 4 3 2 5 4 3 2

4 3 2 1 4 3 2 1

3 3

1 3 3 3 3
1

3 3 3 3

x

h

Y

Y Y Y Y

Y Y Y Y Y Y Y Y
F

h Y Y Y Y Y Y Y Y

 
 
 
 
 

  
  
  
  
  
  
  
  
  
 

 
 

 
 

 
 


 


  
   
            


                         
    

1

1

3 2 1

2

2 5 4 3 2
1 2

3

5 4 3 2 5 4 3 2 1

4 3 2 1 4 3 2 1

2

2

1 3 3

2
3 3 4 6 4

3 3 3 3

x h

h

x

Y Y Y

h

Y Y Y Y
x

h
Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 


 


 


 


 


 


 


 


 


  
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   

(89) 

where F  and C  are given by (85) and (81) 

 

The following auxiliary parameters ; ; ; ;K S W C g  can 

now be found from  ; ; , ,A H B C F  using the 

transformation 

; ; ; ;Y A B E F

xe l e K e S e W e g     . However, 

we can now compute the original mortality parameters

; ;A H B using the transformations in (28c). Substituting 

the values into the force of mortality, equation (28a) is 

completely solved. 

 

Mortality experiments on the generalized 

Makeham’s law for mortality intensities

Proposition 1 (Claim): A life continues to be in a state 

of vitality or continuous longevity unless otherwise 

acted against his survival by an external force of mortal-

ity due to a source. Within the factors determining the 

evolution of mortality intensities, the human ageing 

characterizes the most pervasive effect in influencing 

the vulnerability of many causes of death. Consequently, 

age changes constitutes the highest demographic risk 

factor in all age related sicknesses.
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It is on this argument that this study is based on age 

dependent mortality intensities satisfying Occam’s

razor and moreover, life insurance schemes issued for 

protection and pension purposes are defined on long or 

short term durations.

The data set employed in this study is a single year of 

age population data set lx taken from the published 

DAV 2008 German survival data for male. German data 

is considered because the country has proven mortality 

data collection records. Moreover Germany has death 

rate pattern similar to that of Nigeria. Germany has 

death rate of 12.3%  while Nigeria has death rate of 

13.1%. The ages considered in the analysis are in single 

year within the age range 0 120. Our goal in this study 

is to compute the values of instantaneous mortality, 

curve of death, probability of death and probability of 

survival for a life insurance contract offered to a life 

aged x . 

Generalised Makeham’s mortality life table

In the Table that follows, x  represents the age, lx  is 

the decreasing survival function, x  is the mortality 

rate intensity, lx x  is the curve of death. px  is the 

probability that a life aged x  survives to the next age 

x 1, qx  is the probability that a life aged x  will die 

before reaching age x 1, The mortality table below 

was generated using equations (28a), (81), (86), (87), 

(88).

Results and Discussion

The study focuses on extended mathematical modelling 

and implementations of life table functions using 

Generalised Makeham’s law of mortality. The findings

are discussed along the male gender disparity.

In Table 1, the neonatal and infant mortality from birth 

to the first birthday is high but the mortality rate 

intensity falls rapidly within 0  x  7  and becomes 

relatively stable within 8  x  9  before attaining a 

minimum risk around age 10. The relative stability in 

this interval can be due to the predictable trend’s

gradual reduction in mortality over time or it can be due 

to idiosyncratic conditions neither due to shocks nor 

trends. This is an empirical evidence showing that the 

mortality rate generated through GM 2,2  actually de-

clines at 10 . The parameters of GM 2,2  is,

 

(A, B, H, C)MALE = (0.003012821, 4.07194 x 10
–05

, –

0.000100466, 1.102923606)  (90) 

 

From the method of successive differencing employed 

to model  2,2GM , the male ageing parameter 

values 1.102923606  fall within the globally accepted 

interval 1.08 1.12C   for the  ,GM m n  family. 

This method is superior to the method of maximum 

likelihood estimation adopted in [17] where the ageing 

C  parameter is estimated as 1.024738 . The authors’ 

method violated the permissible interval. 

The mortality rate intensity further declines within 

11 33x   and finally increases in the interval 

34 120x  . The possible medical intervention in 

the public health system to manage young adulthood 

mortality could be observed as the male’s mortality 

rates have reduced. The decline in mortality rates 

within the former interval has significant impact on life 

annuities and on life insurers. However, the increase in 

mortality rates with age in the latter interval could be 

associated with various factors.  

In men specifically, the risk of prostate cancer increases 

with age around 65  and beyond until it is peaked 

between 78 and 79. Irrespective of sex, the probability 

of contracting a chronic sickness or disability increases 

with age while immunity reduces thus exposing lives 

more vulnerable to health risk and consequently 

increasing the risk of mortality. 

As a result of deaths occurring over time, the survival 

curves for male in Figs 1 and 2 exhibit a consistent 

decrease in the number of lives surviving out of the 

initial 1000,000 newborns and consequently, their 

trajectories across ages display negative slope in line 

with equation, 
x x

d
l

dx
  . This accounts for the 

reason why the curve xl is relatively flat for male with 

almost zero gradient. The curve exhibits a sudden sharp 

decline in the number of survivors around 80  for male 

signifying that mortality rates are relatively low up till 

age 80  before subsequently experiencing a sharp 

increase as observed in Fig. 1. The implication is that in 

Figs 1 and 2 the points at which the survival curve lx 
inflexes is around 80  for both sexes. Furthermore, the 

curve of death in Fig. 1 tapers to a Mesokurtic curve. 

The mode of death intensity curve moves towards 

advanced ages and the concentration of death around 

the mode is increasing. Consequently, the survival 

curve lx is noted to exhibit a rectangularization pattern 

such that there is an observed progressively 

concentrated and increased mortality rates during 

senescent ages. As a result, the survival function 

assumes the observed rectangular shape. The accidental 

deaths at young ages are also seen to be increasing. 

These observed phenomena have pervasive socio-

economic implications on the increasing number of 

lives attaining the retirement age as well as the period 

of extension during which the life annuity providers 

will pay out the benefits. Consequently, robust 

mortality rate estimation has a direct effect on the 

actuarial present value of future liabilities and the 

associated level of reserves that life office paying 

benefits holds. From age106  in Table 1, accurate 

estimation of mortality could be challenging due to 

errors in age heaping reporting from vital statistics and 

by the low number of lives and of deaths.  
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Particularly, the interval 107 120x   has the 

following implications. (i) Mortality data are scanty and 

are not reliable and as a result, the asymptotic 

behaviour of the underlying parsimonious function of 

mortality towards the end of mortality table is 

inconsistent. (ii) It seems many deaths were recorded 

but do not necessarily represent the point where lx 
inflexes.  

 

Table 1:  2,2GM male mortality table 

x  xl  x  x xl   xq  xp  

0 1000000 0.00305354 3054 0.00300100 0.99699900 

1 996999 0.00295727 2948 0.00290472 0.99709528 

2 994103 0.00286142 2845 0.00280957 0.99719043 

3 991310 0.00276605 2742 0.00271560 0.99728440 

4 988618 0.00267121 2641 0.00261982 0.99738018 

5 986028 0.00257695 2541 0.00252731 0.99747269 

6 983536 0.00248332 2442 0.00243407 0.99756593 

7 981142 0.00239040 2345 0.00234115 0.99765885 

8 978845 0.00229825 2250 0.00225061 0.99774939 

9 976642 0.00220696 2155 0.00215842 0.99784158 

10 974534 0.00211662 2063 0.00207073 0.99792927 

11 972516 0.00202731 1972 0.00198043 0.99801957 

12 970590 0.00193916 1882 0.00189369 0.99810631 

13 968752 0.00185227 1794 0.00180851 0.99819149 

14 967000 0.00176678 1708 0.00172285 0.99827715 

15 965334 0.00168283 1624 0.00163985 0.99836015 

16 963751 0.00160059 1543 0.00155953 0.99844047 

17 962248 0.00152021 1463 0.00147987 0.99852013 

18 960824 0.00144191 1385 0.00140296 0.99859704 

19 959476 0.00136588 1311 0.00132781 0.99867219 

20 958202 0.00129238 1238 0.00125548 0.99874452 

21 956999 0.00122164 1169 0.00118704 0.99881296 

22 955863 0.00115397 1103 0.00112150 0.99887850 

23 954791 0.00108967 1040 0.00105782 0.99894218 

24 953781 0.00102909 982 0.00100023 0.99899977 

25 952827 0.00097262 927 0.00094561 0.99905439 

26 951926 0.00092068 876 0.00089608 0.99910392 

27 951073 0.00087373 831 0.00085272 0.99914728 

28 950262 0.00083229 791 0.00081346 0.99918654 

29 949489 0.00079693 757 0.00078147 0.99921853 

30 948747 0.00076826 729 0.00075679 0.99924321 

31 948029 0.00074699 708 0.00073943 0.99926057 

32 947328 0.00073386 695 0.00073153 0.99926847 

33 946635 0.00072973 691 0.00073101 0.99926899 

34 945943 0.00073551 696 0.00074317 0.99925683 

35 945240 0.00075223 711 0.00076489 0.99923511 

36 944517 0.00078100 738 0.00080041 0.99919959 

37 943761 0.00082308 777 0.00084979 0.99915021 

38 942959 0.00087983 830 0.00091520 0.99908480 

39 942096 0.00095276 898 0.00099565 0.99900435 

40 941158 0.00104354 982 0.00109652 0.99890348 

41 940126 0.00115400 1085 0.00121792 0.99878208 

42 938981 0.00128618 1208 0.00136105 0.99863895 

43 937703 0.00144229 1352 0.00152927 0.99847073 

44 936269 0.00162481 1521 0.00172707 0.99827293 

45 934652 0.00183646 1716 0.00195367 0.99804633 

46 932826 0.00208024 1941 0.00221478 0.99778522 

47 930760 0.00235944 2196 0.00251193 0.99748807 

48 928422 0.00267772 2486 0.00285000 0.99715000 

49 925776 0.00303910 2814 0.00323404 0.99676596 

50 922782 0.00344802 3182 0.00366826 0.99633174 

51 919397 0.00390936 3594 0.00415490 0.99584510 

52 915577 0.00442852 4055 0.00470305 0.99529695 

53 911271 0.00501146 4567 0.00531785 0.99468215 

54 906425 0.00566474 5135 0.00600491 0.99399509 

55 900982 0.00639560 5762 0.00677372 0.99322628 

56 894879 0.00721202 6454 0.00763008 0.99236992 

57 888051 0.00812281 7213 0.00858397 0.99141603 

58 880428 0.00913768 8045 0.00964531 0.99035469 

59 871936 0.01026734 8952 0.01082534 0.98917466 

60 862497 0.01152362 9939 0.01213569 0.98786431 

61 852030 0.01291953 11008 0.01358755 0.98641245 

62 840453 0.01446946 12161 0.01519776 0.98480224 

63 827680 0.01618926 13400 0.01698120 0.98301880 

64 813625 0.01809640 14724 0.01895345 0.98104655 

65 798204 0.02021017 16132 0.02113370 0.97886630 

66 781335 0.02255183 17621 0.02354560 0.97645440 

67 762938 0.02514485 19184 0.02620527 0.97379473 

68 742945 0.02801510 20814 0.02914348 0.97085652 

69 721293 0.03119110 22498 0.03238212 0.96761788 

70 697936 0.03470433 24221 0.03595315 0.96404685 

71 672843 0.03858949 25965 0.03988300 0.96011700 

72 646008 0.04288486 27704 0.04421307 0.95578693 

73 617446 0.04763267 29411 0.04897270 0.95102730 

74 587208 0.05287949 31051 0.05420566 0.94579434 

75 555378 0.05867666 32588 0.05995196 0.94004804 

76 522082 0.06508084 33978 0.06626162 0.93373838 

77 487488 0.07215451 35174 0.07318129 0.92681871 

78 451813 0.07996656 36130 0.08075908 0.91924092 

79 415325 0.08859299 36795 0.08906037 0.91093963 

80 378336 0.09811763 37121 0.09813235 0.90186765 

81 341209 0.10863292 37067 0.10804522 0.89195478 

82 304343 0.12024083 36594 0.11886260 0.88113740 

83 268168 0.13305379 35681 0.13064944 0.86935056 

84 233132 0.14719586 34316 0.14347666 0.85652334 

85 199683 0.16280382 32509 0.15740949 0.84259051 

86 168251 0.18002855 30290 0.17252201 0.82747799 

87 139224 0.19903645 27711 0.18888985 0.81111015 

88 112926 0.22001105 24845 0.20657776 0.79342224 

89 89598 0.24315477 21786 0.22563004 0.77436996 

90 69382 0.26869087 18642 0.24614453 0.75385547 

91 52304 0.29686557 15527 0.26812481 0.73187519 

92 38280 0.32795046 12554 0.29164054 0.70835946 

93 27116 0.36224506 9823 0.31675026 0.68324974 

94 18527 0.40007972 7412 0.34333675 0.65666325 

95 12166 0.44181880 5375 0.37152721 0.62847279 

96 7646 0.48786416 3730 0.40125556 0.59874444 

97 4578 0.53865901 2466 0.43228484 0.56771516 

98 2599 0.59469220 1546 0.46479415 0.53520585 

99 1391 0.65650286 913 0.49820273 0.50179727 

100 698 0.72468563 506 0.53295129 0.46704871 

101 326 0.79989637 261 0.56748466 0.43251534 

102 141 0.88285840 124 0.60283688 0.39716312 

103 56 0.97436953 55 0.64285714 0.35714286 

104 20 1.07530965 22 0.70000000 0.30000000 

105 6 1.18664924 7 0.66666667 0.33333333 

106 2 1.30945863 3 1.00000000 0.00000000 

107 0 1.44491836 0 0.00000000 1.00000000 

108 0 1.59433042 0 0.00000000 1.00000000 

109 0 1.75913086 0 0.00000000 1.00000000 

110 0 1.94090349 0 0.00000000 1.00000000 

111 0 2.14139515 0 0.00000000 1.00000000 

112 0 2.36253248 0 0.00000000 1.00000000 

113 0 2.60644040 0 0.00000000 1.00000000 

114 0 2.87546255 0 0.00000000 1.00000000 

115 0 3.17218377 0 0.00000000 1.00000000 

116 0 3.49945494 0 0.00000000 1.00000000 

117 0 3.86042038 0 0.00000000 1.00000000 

118 0 4.25854803 0 0.00000000 1.00000000 

119 0 4.69766275 0 0.00000000 1.00000000 

120 0 5.18198308 0 0.00000000 1.00000000 
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Figure 1: GM (2,2) male survival and curve of death 

functions 

 

 
Figure 2: GM (2,2) male’s mortality, survival and 

curve of death functions 

 

The survival lx function in Figs. 1 and 2 representing 

the expected number of lives surviving to age x  out of 

an initial group of 1000000 lives clearly forms 

asymptote on x  axis. 
 

In Table 1 and within 0  x 1, the neonatal 

mortality rate intensity seems to be very high but 

declines more sharply for male.The probability density 

function of the distribution of deaths represents an 

important mortality statistics since it is an immediate 

indication of key longevity measures describing how 

long a population will live on the average and the extent 

of variability of ages at death. In Table 1 with respect 

to male, the curve of death function lx x  describes the 

expected density of deaths at age x  with respect to the 

population of lives surviving to age x  and 

coincidentally for the male, there is a local minimum of 

lx x  around10  where morality declines. The local

extreme points of x xl   corresponds to points of 

inflexion of xl  following the observations below,  

 
2

2

1
x x x x x x

x

d d d d d d
l l l l l

dx dx l dx dx dx dx


   
          

    

(92) 

x x x x x x

d d d
l l l

dx dx dx
    . (93) 

Observing that x x xl l   , we have 

   x x x x x x x

d
l l l

dx
       (94) 

The point at which xl inflexes becomes  

    0x x x x x x x

d
l l l

dx
        (95) 

So that  

2

x x

d

dx
     (96) 

Since the functions   , ,x x x xl l 
 
are functionally 

related, their behaviors are jointly examined through 

mortality surface and three dimensional plots as 

displayed in Fig. 3. 

 

 
Figure 3: GM (2,2)

 
surface plot for male’s mortality, 

survival and curve of death functions 

 

Notably, the function  2,2 0x GM    is 

continuous for all 0x   and satisfies the condition, 

0

xdx


  .    (97) 

Although in Table 1, the probability of death satisfies 

0 1xq  , the mortality rate intensity is increasing 

and 1x 
 
towards the end of the mortality table. The 

implication in Table 1  is that there is a mortality risk of 

having a higher rate of death than expected. The high 

rate of mortality (jumps) may have occurred as a result 

of the sudden occurrence of pandemics or war. This is 

because xq is a probability whereas x  is a rate. 

Consequently at an infinitesimally small time   in 
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Table 1 during senescence, the mortality intensity is 

high and becomes,  

0 0 0

1
lim lim lim

x x

x x x x
x

x

l l

l l l q

l




 

  




   

  
 (98) 

where 0 1   and consequently, the above argument 

explains clearly the mathematical distinction between 

the mortality rate intensity x  and the probability of 

death xq . 

For instance if 
1

3
  , then 1

3

3x xq
 

  
 

 and 

therefore, 1x   

The highest age in the mortality table is given by 

  1
xTSup F    R . Consequently, it is 

numerically determined from the estimated xl to be the 

first age where 1xq   whereas   106x M   for 

the males. To study the behaviour of mortality pattern 

beyond age106 , the male’s intensity is extended to age 

120  where the mortality rates at extreme age still 

exhibit exponential increase. This behaviour may not be 

valid in practice. 

The omega age represents the age after which lives 

rarely survive because for all x  , 

1 ... 0x xl l    and consequently, 

 1

0 0 0
lim lim lim 1 0x x

x x
x x x

x

l l
q p

l



  

 
    

 

. But the 

probability of death qx 1. These two arguments 

explain clear inconsistency of mortality behaviour in 

death probability function at extreme ages qx in Table 

1. For the male in Table 1, the trajectories of lx is 

observed to decline steeply at perinatality till infancy 

and exhibiting at least a point of inflexion to x  axis as 

seen in Figure 1.

The argument that no life exists after age 106  is 

supported as follows (i) The set   containing the 

domain of mortality validity is assumed to have no limit 

point (ii) then we can show that   is closed.   is 

closed iff  it contains all its limit points. Certainly by 

(i),   has no limit point by the hypothesis of the 

theorem, consequently, there are no limit point of 
which are outside of   (which are not contained in 
), so  contains all its limit points. Therefore   is 

closed.

In Table 1, for male and within the age intervals 

0  x  31, 81 x 120 , we observe that 

x  qx however, within the interval 33  x  79 , 

x  qx .By reason of equation (15),

1

0

x x x xl q l d     . If 
x xl   

 were increasing, 

then 0x x

d
l

d
 


    and at the beginning of the 

interval 0 1x  , x x x x x xl q l q     provided 

the curve x xl   is increasing. By definition,

x x x

d
l l

dx
  , it then follows that when x xl 

 
is 

increasing, then clearly 
x

d
l

dx
is decreasing and the 

gradient of the tangent to the curve xl will be 

decreasing. The survival function xl will then be 

concave to the age axis. Consequently, if the survival 

function xl  
is concave to the age axis, the condition 

x xq  is satisfied. However, if the survival function 

xl  
is convex to the age axis x xq  . In Table 1 for 

male, x xq   almost at ages  32,80 . The 

observation that x xq   in Table 1  occurs whenever 

the survival function xl is almost linear in the form 

1 1

x x

x x

l l x x

l l x x

 






  
 

  
  (99) 

for 0 1   and 

  11x x xl l l        (100) 

 

 

 

   1 1 11 1x x x x x x x x
x

x x x x x

dl l l l l l l l

l d x l d x l l l





   


 

   



   

  
    

 
(101) 

 

   1 11 1

1

x x x x x
x

xx x x x

x

l l l l q

ll l p q

l


 




 




 
    

 

(102) 

Consequently at time 0  , x xq  . 

 

The progressive increase in the mortality rate intensity 

for male is displayed in Fig. 1. Most life tables such as 

Commissioner’s Standard Ordinary table (CSO) type

and many published works do not account for x based 

on the governing mortality intensities because of the 

computational intractability associated with their 

estimations. The male’s ageing parameter our model

is confirmed to satisfy the globally accepted ageing 

interval 1.08  C 1.12. An interesting point in the 

modelling of GM 2,2  is the novelty of the 

estimation technique through successive differencing 

applied. The technique gives better estimation for the 

ageing parameter than the maximum likelihood method 

(MLE) commonly used in most estimations.
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The MLE technique does not often satisfy the globally 

accepted interval of validity and hence may be doomed 

in mortality analysis.When a life buys life insurance, 

the life is suspected to have a substandard health issues 

and hence such a life will have substandard mortality. 

As a result, life insurers will be interested in the 

functional relationship between standard and 

substandard mortality during the period of insurance. 

We assume here that the difference between standard 

and substandard mortality is the extra mortality risk 

which can be constant if 1 0x s x s      , 

decreasing when 1 0x s x s      and increasing 

if 1 0x s x s       

 

Conclusion 

In this study, we have investigated different age 

dependent mortality functions to generate with higher 

precision mortality rate intensities and life insurance 

products. The rationale behind the use of successive 

differencing approach is to ensure that mortality rate 

estimation is technically precise and appropriate to the 

mortality risk evaluation. Secondly in measuring the 

mortality intensities, the central problem is not 

concerned about the choice of the appropriate 

functional form which seems very important to our 

problem areas but rather a combination of analytical 

functions and actuarial assumptions that are critical in 

creating the pay-off space for the life insurance claim 

contingencies and life annuity benefits together with 

developing analytically robust life table models in order 

to solve the estimation problem of the non-linear 

mortality intensities so as to produce good underwriting 

results.The different numerical estimation methods and 

assumptions adopted in this study evolve from varying 

underwriting experiences emanating from: (i) various 

forms of life insurance valuation and underwriting 

techniques, (ii) the extent of their complexities and (iii) 

the level to which actuary usually advises life insurers 

on the methods to be applied when carrying out 

actuarial valuations.   

Finally, our results suggest that the underlying 

functions applied such as successive differencing is 

well suited to the estimation of non-linear parsimonious 

mortality functions which satisfies the Occam’s razor. 

If life offices do not apply accurate mortality table 

based on correct estimations, they will be vulnerable to 

the risk of paying much more death benefits than 

expected. Consequently life offices are therefore 

advised to reserve for mortality risks to mitigate against 

being insolvent. 
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