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Introduction

Life insurance which payments are either contingent on
death or survival concerns every individual especially
the working population who are automatically covered
while in service by reason of the government’s social
security program but who will possibly choose life
annuity options at retirement. In actuarial context, it is
essential to observe that life tables are used to measure
the pattern of deaths, survival rates, life expectancy at
varying ages in order to explain changes in the
population.

In order to price life insurance and annuity products and
ensure the solvency of insurance companies, estimates
of future events such as deaths are functionally
formulated using mortality models to generate life
tables. For life offices, any potential deviation from
mortality assumption employed in pricing at the
inception of the contract will constitute clear threats to
its underwriting performance.lt has been observed that
many life insurance providers in developing countries
such as Nigeria depend on exotic life tables which are
incorrectly applied to overcharge or undercharge their
policyholders. If they undercharge, many claims are
reported and life insurance products are underpriced
leading to the risk of insurer’s insolvency or if they
overcharge, workers will suffer inadequate income
streams at retirement.

Developing and implementing age dependent mortality
rates in functional forms have presented critical
modelling problems for life insurance and annuity
firms; thereby creating serious research gaps. A
recurring problem with the existing life tables is that
their underlying generating functions are not capable of
measuring perinatal mortality and there is no evidence
that mortality at 10 declines. These observed
irregularities in the age pattern of mortality are the
prime motivation in the search for analytical functions
that fully capture the observed variations of mortality
with age. To fill the gaps identified, the study aims to
develop specific life table function under the
frameworks of Generalised Makeham’s force of
mortality.

The basic data input required for generating life tables
are the age specific death rates enumerated from the
information on deaths from vital statistics (using age

and sex) and population |X by age and sex. In most

developing countries such as Nigeria, these data do not
exist because of dysfunctional vital registration system.
The most popular law of mortality stated in Gompertz's

law [1] was developed to model old age mortality
around 60 - 90 years and assumes that death rates in-
creaseexponentially at old age.
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Following observation by Debon et al. [2],
Generalized Makeham’s mortality function in equation
(1) is defined to measure mortality from infancy to old
ages.

m+n

Zﬁkx +exp ), fx T

k=m+1
wheremM and N are non-negatlve mtegers representlng

the orders of the polynomials and /3, are mortality

0 n
=GM (0,n)=>" B x k’1+exp2ﬁkxk
k=1 =1

GM

k=1 k=m+1

Consequently, mortality at zero g, is inadmissible.

Therefore, in order to absorb the Gompertz’s
assumption and fall in line with actuarial practice, the

&and &

X X
and the equations are modified as follows;

Zﬂkx“+exp Z X m2Ln>1

k=m+1

undefined terms at age zero are ignored

=GM (m,n)= epoﬂk X' m=0 &
Zﬂ kl _
k
If m=0,n=2, we have the Gompertz’s law
=GM (0,2):BCX; 60 < x <90 where B is

the initial mortality, C is the ageing parameter and X
is the age. This mortality law is not capable of
capturing infant mortality rates and mortality due to
accidents in young adulthood (accidental hump). This is
because exponential mortality growth rate is not
expected before sexual maturity.

The relatively few parameters in [1] makes it inflexible
consequently, the author in [3] assumes a constant addi-
tive age-independent constant parameter that accounts

for theaccidental hump mortality. If m =1,n = 2 in
equation(4) the Makeham’s mortality function becomes

u, =GM (L2)=A+BC*; 20<x<90 (4a)

where A defines the background mortality independent
of age [4]. The assumption of constant mortality rate is
not always true since we all have different mortality
exposures due to different life styles, nutrition, job and
environment.

To capture mortality at low ages and extreme ages from
this law, mortality rates are then extrapolated because
of insufficient mortality experience. Since there is an
approved range of validity where the mortality function
is well behaved, best mortality estimates outside the
intended range may not be obtained by extrapolation. In
order to avoid the need to extrapolate, we can set

m=2,n=2 in (4) to obtain the Generalized

_,B1+

Trexp Z fx Zﬁk
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parameters. Because of the complexity involved in
evaluating the parameters as both orders increase, m

and N are constrained inpractice as M + N < 5 . This
equation has implicationsfor m and N . Whenm = 0
and N = 0, we obtain thefollowing equations;

2t Jrepoﬂk )

lilt) o

Makeham’s  law 1, = GM (2, 2) = A+ Hx+BC”

where H € Ris a new parameter which explains
changes in the background mortality. It is natural for
mortality to decline at ten to explain changes in
mortality between conception and death. The
Heligman-Pollard mortality law of the form

Hy = Zm:ak exp |:_bk ( f (x)-c )ak ]Was developed
k=1

to decompose mortality according to three stages of life
where the constants {ak b..c, o } are mortality

parameters and f, (X)z Inx or f, (X): X [2].

However, the major problem currently is that, the
generating survival function, the probability of survival
function and the hazard rate functions have not been
developed as a result of the emerging analytical
intractability of the force of mortality function and this
accounts for the reason why its associated life insurance
monetary functions have not been developed till date.
Since mortality intensity evolves in continuous time, a
basic functional representation of mortality risks is the
severity to die function which defines the aggregate
death severity that a life is exposed to over time.
Consequently, the probability that a life survives to an
age is the exponentiated negative severity to die
function within an arbitrarily closed time interval.

A sound knowledge of mortality intensity could be
applied to measure: (i) the severity to die function

- ,ux+tdt (i) the survival probability function , p,

(iii) the curve of death | 4 of an insured life all

applicable to carry out actuarial valuations in life
insurance schemes. Thus all life contingent events
represent direct application of numerical techniques in
computing life table functions to ensure cost effective
approximations.

Actuaries are required to conduct precise mortality
estimations using the appropriate numerical technique
since valuation of life insurance schemes depend
heavily on both mortality rate and interest rate
intensities when performing actuarial valuations on life
insurance and pension schemes.
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The inability to conduct accurate mortality results will
expose life insurance companies to unforeseen risk of
insolvencies. Since insurance, annuity and pension
funds heavily depend on life tables when conducting
actuarial valuations for policies and premium
computations, there is a dire need for accurate and
reliable mortality tables.

Grave concern in actuarial practice is the estimation
problem relating to nonlinear mortality intensities that
have been functionally formulated to obtain life
insurance products. In related studies in [5, 6] it was
observed that the uniform distribution of deaths

.. =(1-t)l, +tl,, has

specifically developed to solve most mortality
estimation problems and expedite computational
convenience  while inadvertently  trading  off
mathematical accuracy and consistencies. As a result,

the same number of lives |X at age Xis expected to die

periodically and because of this assumption, the authors
applied the linear interpolation to estimate non-linear
mortality functions in all actuarial computations but

were unaware that the survival function|l, € c®.

From the foregoing, the following observations are
evident: (i) Mortality functions based on linear
interpolation are not analytically consistent with each
other such that same mortality functions would mean
different approximations between integral ages. (ii)
Because of the identified functional inconsistencies, it
can no longer be reasonably assumed that linear
interpolation assumption is competent to estimate non-
linear mortality functions. (iii) The assumption may not
always be acceptable to a larger extent because equal
number of lives cannot be assumed to die periodically.
(iv) The second and higher derivatives of the survival

function |, would be zero and hence renders the

interpolation been

applications of both Taylor’s and Euler-Maclaurin’s
series to mortality estimations inapplicable.

Arguably, further evidence of inconsistent mortality
computations emerged in [7, 8] that the uniform
distribution of death through linear interpolation
assumption over which actuarial computations are
currently based may no longer be adequate for many
life insurance applications. Unknown in mathematics
literature, some workers [9, 10] foresaw this problem in
advance and constructed an interpolation resulting in
mortality matrices which can be applied to model
mortality rate intensity.

The deep investigation in [8] leading to the discovery of
key computational deficiencies of linear interpolation
was carried out to expose the inconsistencies in linear
interpolation mortality assumption. The inadequate rate
of mortality computations used in life insurance pricing
and in mortality assumptions poses a serious challenge
to life insurance operations. Unfortunately actuaries do
not seem to observe this potential threat ahead and life
insurance regulators similarly are being myopic of the
possible dire consequences on the industry. The rising
waves of research gaps therefore constitute critical
concerns for life office to the extent that if they are not

———————
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reasonably contained immediately can lead to
insolvencies of life offices.

Let |X be a strictly decreasing function of real age such

that if X <Y then |X > |y, the reason for this is that the
insured lives must always die at an instant.

(ii) The number of deaths between ages X and X+1 is
defined as Since |X

d =1 -1.. is strictly

decreasing, |Q — 0 as no life exists towards the end of

mortality table. The radix |, is the number of insured
surviving at beginning of the mortality table.

Differential equation governing the force of

mortality &, at an instant

dl

X+¢
According to [7, 11 — 14], the ratio of —Y to |X+¢

at age X and time ( represents the mortality rate

intensity. The ratio is the instantaneous force of
mortality

; Ix — Ix+A
Hy=— L'LQT ®)
1 d|x+
Hyie =__—§=_ilnlx+§ (6)
Ix+§ d é/ d é/

d|x+§
? = _lux+§|x+§ = d|x+§ = _:ux+§|x+§d é/ (7)
Integrating (7) from age 0 to age 2— X, we obtain
Q—x Q-—x

I d|x+§ == I :ux+§|x+§dé/ ©)

0 0

Ox Q—x
I:IX*{ }0 == J. lux+§|x+§dé/ 9)
0

Recall that |Q — 0 as no live survives at highest age
Q) in the mortality table.

Q-—x
Ix+Q—x - Ix == .[ /’lx+§|x+§d§ (10)
0

The survivor’s function at an arbitrary age Xis then
obtained as

QX
Ix = J lux+cj|x+§dé/ (11)
0

Now, evaluating (9) from age 0 to age 1 and applying
condition (ii) above

1 1
[Ix+§ j|; = —-([/lx+§lx+§d§ = Ix+1 - I>< = __(IJ./ux-v-glx-v-gd; (12)
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The number of deaths between ages Xand X+1lis
obtained as

1

dx = J':ux+§|x+cjdé/
0

Again, evaluating (9) from age 0 to age & we have

g 0
|:IX+¢ ]z = _J‘ﬂ”{IX*ﬁdg = I><+¢9 - IX = _J‘lux+§|><+§dé/ (14)
0 0

The probability that a life aged X dies before reaching
age X+ @years is obtained by dividing (14) by |X

4 I 4
gqx=£ﬂx+g%jdé=£ux+;(gpx)dé (15)
to die is the

(13)

The severity hazard function

h,(6)= J‘yx+§dé’ obtained by integrating both sides
0

of (6) from time O to age &,

g o
J-,leJr{dé’:—J.d Inl,.. (16)
0 0
9 Ix+€
[ .d¢ ==(In1,_, —Inlx):—lnl— (17)
0 X
0
_In(a pX):J‘ﬂ)H{dé, (18)
0

(oPy)= exp( J'ywdu + j ﬂx+udUJ = exp(

==t (P)= 1 (1)

The probability that a life aged X survives to the next
age (X + Q)years becomes

(y0,)= exp(—jux+¢d§ ]

as@ — oo in the result above, (,p,)=0 and the

(19)

integral Iyx+§d§= IN0 =00 while
0

as 0—-0, (,p,)=1 and the integral

6
J‘,umgd{: In1=0. Therefore the function h,(t)
0

satisfies the conditions that limh (0)=0and

-0
limh (19) 0.

00—

The integral in equation (19) has the property that
O+x
(o)) eXp[ I ﬂ;d§+Iﬂ;d§j (19a)

Letting { — X =U, the survival probability becomes;

—X

[ 14, du- fﬂwdu +| uxdeJ
(19b)

(20)

The distribution and the complementary functions of

TareF If cj)d;’and

S (s)=1-F (s) (24)

—Iy(x+u)du
=e 0
Differentiating the survival function (19) partially with respect to t, we obtain death density
a a _J./”x+§dt _J./ux+¢d ¢
a(tpx):ae ° =—Hy € ’
Therefore, from the arguments above, we state
unequivocally the following results
4
-0
_J.e ) (s px )/ux+sds
dinl, . 5
=1lim (21)
dx £-50 ¢

Applying L’Hopital’s rule, equation (21) becomes

dinl, .
dX B 5%0 (dg{je px /ux+sds}} (22)

Il tim[[ (, py )t | =0

—lim| e
dx £50

(23)

However, in [15, 16], the continuous death density is in
other words defined as

Tx (S):%(qu)

The distribution of TX can be actuarially expressed as

(25)

F. (s)=P(T,<s)=q, (26)
and
S; (s)=P(T, >s) 27
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Materials and Methods

The method of severity to die function

The severity to die in form integrated hazard function is
required to model the probability of survival function.
In order to account for increase in background

mortality, we set mM=2 and N=2 in (4) to obtain the
mortality function (28a) where A,B,C,H are
mortality parameters satisfying law of parsimony
(Occam’s razor)

4, = A+ Hx+BC* (28a)

Integrating both sides of (28a) from zero to an arbitrary
age X of the insured to obtain the severity to die
function, we have

j.,utdt:
0

X

_[(A+ Ht+BC')dt (28b)

0
{ } (28¢)
0

X

Ju(t)dt=

0

2 t
At+H—t+ BC

log, C
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Hx2+ BC* B
2 log,C log,C

p(t)dt = Ax+ (28d)

O ey <

In order to simplify (28d), we use the following
transformations

A=log, S =(-1)log, S
H =log, W =-2log, W
B =—(log,C)(log, 9)
— 28e
109. 9 = log, C -
K=l
g

Substituting the transformations in (28e) into (28d) we
obtain;

i,u(t)dt =—(log, s)x—(log, W) x* —

Simplifying (28f), we have

iu(t)dt =—(log, s)x—(log, W )x? —(log, g)C* +(log, g)

p(t)dt

u(t)dt=—log, s* —log,W* —log, g

Ot x O=—x O

The survival probability function is given by

Iz

In order to obtain the exponential function of the LHS
in (28i), we set X =0 in (28j) as follows

t

tPo = EXp[_J. ﬂedeJ
0
t

=1, exp(— [ 1,0 9}
0

The subscript t in (28j) is an arbitrary age and
consequently, we replace t by insured’s age X

I, =1, exp[—jytdt)
0

Substituting (28i) into (28m) and have

=IT—+t=exp

X

t Px (28))

(28K)

(281)

(28m)
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xlog, s—x*log,W —C*log, g +log, g

(log, C)(log, g)C . (log, C)(log, g) (281)
log, C log, C
(289)
(28h)
+log, g (28i)
{-log, 5"~ IogeWX2 og, o° +log, g Iogesx+logewxz+logegCX—Iogeg
| =1g { ( j L Oe{ (28n)

Simplifying (28n) and obtain

|:Iog{
I, =le

The number of lives surviving to age X is given as

IX:I—OSXWXZgCX:KsXWXZgCX; K=h (28p)
g g

2 X
A gC

X\ A f X2~ CX
H 1, 3WI9 (a8
g

Taking logarithms of (28p) and have
log, |, =log, K +log, s* +log, W* +log, g* (29)

log, 1, =(log, K )+ x(log, s) + " (log, W) +C* lag, 9 (30)
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We need to obtain the values of ¢={K; E;E;E} X,, X5, X3, X,, X5 in(34) and using equal step lengths

first, hence we use another transformation X, =X = X3 — X, = X, — X3 = X — X, =N, we have,
Let
_ _ _ _ X, =X +h:x, =x +2h;x, =x +3h;X. =x +4h (35

Y =log, I,; A=log, K;B=log, s; E =log,W;F =log, g (31) ? X_l 0 Xi i & B e
Then Y, = A+Bx +Ex*+FC* (36)
e' =l;e"=K;e®=S;e"=W;e" =g (3  Y,=A+Bx,+Ex’+FC* (37)
IX _ eﬂeﬁxeﬁxzefcx _ eﬂ+§x+ﬁx2+fcx (33) Y3 :Z\_I_EXS +EX32 +ECX3 (38)
Putting (31) in (30) and obtain AL D v, Cr4
Y = A+ Bx+Ex* + FC" @y Ve TATBRAEXHFC )

Y, = A+Bx, +Ex, +FC* (40)

substituting arbitrary five ages )
Subtracting (36) from (37)

AY, =Y, —Y, = A+Bx, + Ex,? + FC* —(K+§xl +Ex? +ECX1) (41)
AY, = A+Bx, + Ex,? + FC* — A—Bx, —Ex’ —FC* (42)
AYl:§(x2—x1)+E(x22—xf)+E(CX2—C"i) (43)
AYl:E(xz—x1)+E(X2—><1)(X2+X1)+E(CX2—Cxl) (44)
Substituting X, defined in (35) into (44) we have

Y,—Y, =hB+hE (2%, +h)+FC* (C"-1) (45)
Taking second difference between (38) and (37)

AY, =Y, -Y, = A+Bx, + Ex;> + FC* —(Z+§x2 +Ex,? + FC* ) (46)
AYZ:E(x3—x2)+E(x32—x22)+E(CX3—CXZ) (47)
AY2:h§+E(x3—x2)(x3+x2)+E(Cx3—CXZ) (48)
Following same procedure as before and substitute for X3 defined in (35)
AYZ:h§+hE(x1+2h+x1+h)+E(Cxl*2h—CX““) (49)
Y, —Y, =hB+hE (2x,+3h)+FC*"(C" 1) (50)
Taking third difference using (38) and (39) and substitute for X,

AY, =Y, =Y, = A+ Bx, + Ex, + FC* —(K+§x3 +Ex,2+FC* ) (51)
AY, =hB+hE(x, +3h+x1+2h)+E(C"1*3h—CXI*Z“) (52)
Y, —Y, =hB+hE(2x +5h)+ FC**" (Ch -1) (53)
Taking fourth difference using (39) and (40) and substitute for X,

AY, =Y, Y, = A+Bx, + Ex,> + FC* —(K+§x4 +Ex,? + FC* ) (54)
AY4:E(xs—x4)+E(x52—x42)+E(Cx5 —CX‘*) (55)
AY4=§(x5—x4)+E(x5—x4)(x5+x4)+E(CXS —CX“) (56)
AY, =hB+hE (X, +4h+x +3h)+F (C*"—C*") (57)
Y;—Y, =hB+hE(2x,+7h)+FC**"(C" 1) (58)

———————
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subtracting (45) from (50) and obtain

Y, =Y, =(Y,-Y,) =hB+hE(2x,+3h)+FC*"(C" 1)LhE+hE(2xl+h)J (59)
+FC*(C"-1)
Y, =Y, =Y, +Y, =hB+hE (2x +3h)+FC*"(C" —1)-hB—hE (2x +h)
Fer(ch ) o0
Y, —2Y, +Y, =hB—hB+hE (2% +3h)—hE (2%, +h)+FC*" (C"-1)-FC*(C"-1) (61
Y, —2Y, +Y, = 2h’E + FC* (C" -1)’ (62)
Subtracting (50) from (53) and have
Y, =Y, —(Y,—Y,) =hB+hE(2x +5h)+FC***"(C" —1)—[hE+hE(2X1+3h)} (63)
+FC*™"(C"-1)
Y, =Y, (Y, =Y,) =hB+hE(2x,+5h)+ FC*"*"(C"—1)-hB —hE (2x, +3h) o0
—FC*"(c"-1)
Y, —2Y,+Y, =hB-hB+hE (2x,+5h)—hE (2x, +3h)
FFCH (CP 1) FC (P 1) o
Y, —2Y, +Y, = 2hEx, +5h?E — 2hEx, —3hE + FC*" (C" ~1)’ (66)
Y, —2Y,+Y, = 2h?E + FC**"(C" -1}’ (67)
Subtract (53) from (58) and have
Yo=Y, (Y, —Y;) =hB+hE (2% +7h)+ FC***"(C" —1){hE+hE(2X1+5h)] (68)
+FC*?(C"-1)
Yo=Y, —(Y, —Y;) =hB+hE(2x, +7h)+ FC***"(C" —1)—hB —hE (2x, +5h) )
—FCx(C"-1)
Y, =Y, —(Y,—Y,) =hB—hB+hE (2x +7h)—hE (2, +5h)+FC**"(C" 1) -
—FC*"(c"-1)
Y, —2Y, +Y, = 2hEx, + 7Th?E — 2hEx, —5h’E + FC*'2" (C" ~1)’ (72)
Y, —2Y, +Y, = 2h’E + FC**?" (C" 1)’ (72)

Subtract (62) from (67) and have
Y, = 2Y, +Y, —(Y; —2Y, +Y,) = 2h*E + FC*""(C" —1)2 —(2hZE+ECXl (c" —1)2)(73)
Y, —2Y,+Y, -, +2Y,-Y, = 2h?E + FC**" (C" 1)’ —2h’E —FC* (C" ~1)’ (74)
Y, —3Y, +3Y,-Y, = FC* (C" -1}’ (75)
Subtract (67) from (72) and obtain
Yo —2Y, +Y, (Y, —2Y, +Y,) = 2h’E + FC***"(C" —1)2 —[2h2E+EC"1+h (c" —1)2} (76)
Y, —2Y, +Y, —(Y, —2Y, +Y,) = 2h’E + FC**?" (C" ~1)’ —2h*E ~ FC**" (C" ~1)° (77)
Y, =2V, +Y,~Y, +2Y, Y, = 2n*E + FC**?" (C" ~1)’ —2n’E—FC*" (C"-1)°  (79)
Y, —3Y, +3Y, -Y, = FC**" (C" ~1)’ (79)

———————
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combining equations (75) and (79) together again and have
Y, -3V, +3Y,-Y, = FC*(C"-1)

Y,-3Y,+3Y,-Y, = FCx"(C"-1)

Dividing the lower equation by the upper in system (80) to obtain the ageing parameter C
on Yo=Y, +3%-Y,
Y, —3Y, +3Y,-Y,

Setting (81) in (79) and have

X +h
|y VRS B
Y, -3, +3Y,—Y, = F|[ 1 =3a 3 7Y, Yo —3Y,+3Y,-Y,
Y, =3, +3Y, -, Y, —3Y, +3Y, Y,

X
= (Y5—3Y4+3Y3—Y2j h {YS—3Y4+3Y3—Y2—Y4+3Y3—3Y2+Y1

Y, —3Y, +3Y, Y, Y, —3Y,+3Y,-Y,

X +h
= £Y5—3Y4+3Y3—Y2J h [Y5—4Y4+6Y3—4Y2+Y1
Y, —3Y, +3Y, -Y, Y, —3Y, +3Y, -Y,

=_ Y, —3Y, +3Y,-Y,

X +h
Y, —3Y,+3Y,-Y, ) P |[Y,—4Y, +6Y,—4Y,+Y, |
Y, -3V, +3Y, Y, Y, —3Y, +3Y, -V,

Using the first equation in (62), we obtain
Y,—2Y, +Y,~FC* (C" -1)

E=
2h?

Recall from (45)
Y,—Y,—hE (2% +h)-FC*(C"-1)

B=
h

Using equation (36), we have

A=Y, -Bx —Ex’—FC"

3
1}
3
} =Y, —3Y, +3Y, -V, (83)

3
} =Y, —3Y, +3Y, -V,

(80)

(81)

(82)

(84)

(85)

(86)

(87)

(88)
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-1 —(2x.+h)

Y, —4Y, +6Y, —4Y, +Y,

Y, —3Y,+3Y,-Y,

2h? %
[Y5—3Y4+3Y3—Y2J h {

3
Y, —3Y,+3Y,-Y, }

Y, —3Y,+3Y,-Y,

1

Y, —3Y, +3Y,—Y, )" [ Y, —4Y, + 6Y,—4Y, +Y, |
Y, —3Y,+3Y,-Y,

1| Ys—8Y, 43 Y, h
h |lY,-3Y,+3Y,-Y,

Y, -2V, +Y,
2h?

Yo-3Y, 43V Y,
Y, —3Y,+3Y,-Y,

Y, —3Y, +3Y, -,

Y, —3Y,+3Y,-Y,

2h? 5
Y. -3, 43, Y, | M ([ Y, —4Y, +6Y,—4Y, +Y, |
Y, —3Y,+3Y,-Y,

Y, —3Y,+3Y,-Y,

~FC™
where F and C are given by (85) and (81)

The following auxiliary parameters K; S;W;C; g can
now be found from {K;ﬁ;ﬁ,c,f} using the
transformation

e = |X;eZ\ = K;eE = S;eE :W;ef = (0. However,

we can now compute the original mortality parameters
A; H; B using the transformations in (28c). Substituting

the values into the force of mortality, equation (28a) is
completely solved.

Y, —3Y, +3Y, =Y, \" | Y, —3Y, +3Y, Y,
Y, —3Y,+3Y,-Y,

———————
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‘1} (89)

Mortality — experiments on the generalized
Makeham’s law for mortality intensities

Proposition 1 (Claim): A life continues to be in a state
of vitality or continuous longevity unless otherwise
acted against his survival byan external force of mortal-
ity due to a source. Withinthe factors determining the
evolution of mortality intensities, the human ageing
characterizes the most pervasive effect in influencing
the vulnerability ofmany causes of death. Consequently,
age changes constitutes the highest demographic risk
factor in allage related sicknesses.
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It is on this argument that this study is based on age
dependent mortality intensities satisfying Occam’s
razor and moreover, life insurance schemes issued for
protection and pension purposes are defined on long or
short term durations.

The data set employed in this study is a single year of

age population data set Ixtaken from the published

DAYV 2008 German survival data for male.German data
is considered because the country hasproven mortality
data collection records. Moreover Germany has death
rate pattern similar to that of Nigeria. Germany has
death rate of 12.3% while Nigeria has death rate of
13.1%. The ages considered inthe analysis are in single
year within the age range0 —120. Our goal in this study
is to compute the values of instantaneous mortality,
curve of death, probability of death and probability of
survival for a life insurance contract offered to a life

aged X .

Generalised Makeham’s mortality life table

In the Table that follows, X represents the age, IX is

the decreasing survival function, p, is the mortality

rate intensity, |, is the curve of death. p, is the
probability that a life aged X survives to the next age
X+1, g, is the probability that a life aged X will die

before reaching age X+1, The mortality table below
was generated using equations (28a), (81), (86), (87),
(88).
Results and Discussion

The study focuses on extended mathematical modelling
and implementations of life table functions using
Generalised Makeham’s law of mortality. The findings
are discussed along the male gender disparity.

In Table 1, the neonatal and infant mortality from birth
to the first birthday is high but the mortality rate
intensity falls rapidly within 0 <x <7 and becomes
relatively stable within8 <x <9 before attaining a
minimum risk around age 10. The relative stability in
this interval can be due to the predictable trend’s
gradual reduction in mortality over time or it can be due
to idiosyncratic conditions neither due to shocks nor
trends. This is an empirical evidence showing that the

mortality rate generated through GM (2,2) actuallyde-
clines at 10. The parameters of GM (2,2) is,

(A, B, H, C)wace = (0.003012821, 4.07194 x 10, —
0.000100466, 1.102923606) (90)

From the method of successive differencing employed
to model GM (2,2), the male ageing parameter
values 1.102923606 fall within the globally accepted
interval 1.08 <C <1.12 for the GM (m, n) family.

This method is superior to the method of maximum

likelihood estimation adopted in [17] where the ageing

C parameter is estimated as 1.024738. The authors’
method violated the permissible interval.
The mortality rate intensity further declines within

11<x<33 and finally increases in the interval

34 <x<120. The possible medical intervention in
the public health system to manage young adulthood
mortality could be observed as the male’s mortality
rates have reduced. The decline in mortality rates
within the former interval has significant impact on life
annuities and on life insurers. However, the increase in
mortality rates with age in the latter interval could be
associated with various factors.

In men specifically, the risk of prostate cancer increases

with age around 65 and beyond until it is peaked
between 78 and 79. Irrespective of sex, the probability
of contracting a chronic sickness or disability increases
with age while immunity reduces thus exposing lives
more vulnerable to health risk and consequently
increasing the risk of mortality.

As a result of deaths occurring over time, the survival
curves for male in Figs 1 and 2 exhibit a consistent
decrease in the number of lives surviving out of the
initial 1000,000 newborns and consequently, their
trajectories across ages display negative slope in line

d
with equation, ———1| = g . This accounts for the
dX X X

reason why the curve | is relatively flat for male with

almost zero gradient. The curve exhibits a sudden sharp
decline in the number of survivors around 80 for male
signifying that mortality rates are relatively low up till

age 80 before subsequently experiencing a sharp
increase as observed in Fig. 1. The implication is that in
Figs 1 and 2 the points at which the survival curve I,

inflexes is around 80 for both sexes. Furthermore, the
curve of death in Fig. 1 tapers to a Mesokurtic curve.
The mode of death intensity curve moves towards
advanced ages and the concentration of death around
the mode is increasing. Consequently, the survival
curve I, is noted to exhibit a rectangularization pattern
such that there is an observed progressively
concentrated and increased mortality rates during
senescent ages. As a result, the survival function
assumes the observed rectangular shape. The accidental
deaths at young ages are also seen to be increasing.
These observed phenomena have pervasive socio-
economic implications on the increasing number of
lives attaining the retirement age as well as the period
of extension during which the life annuity providers
will pay out the benefits. Consequently, robust
mortality rate estimation has a direct effect on the
actuarial present value of future liabilities and the
associated level of reserves that life office paying
benefits holds. From agel06 in Table 1, accurate
estimation of mortality could be challenging due to
errors in age heaping reporting from vital statistics and
by the low number of lives and of deaths.
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Particularly, the

interval

107 <x<120 has the
following implications. (i) Mortality data are scanty and
are not reliable and as a result, the asymptotic

behaviour of the underlying parsimonious function of

mortality towards the end of mortality table
inconsistent. (ii) It seems many deaths were recorded

is

but do not necessarily represent the point where I,

inflexes.

Table 1: GM (2, 2) male mortality table

X |

X

Hy

Oy

Py

996999
994103
991310
988618
986028
983536
981142
978845
976642
10 974534
11 972516
12 970590
13 968752
14 967000
15 965334
16 963751
17 962248
18 960824
19 959476
20 958202
21 956999
22 955863
23 954791
24 953781
25 952827
26 951926
27 951073
28 950262
29 949489
30 948747
31 948029
32 947328
33 946635
34 945943
35 945240
36 944517
37 943761
38 942959
39 942096
40 941158
41 940126
42 938981
43 937703
44 936269
45 934652
46 932826
47 930760
48 928422
49 925776
50 922782
51 919397
52 915577
53 911271

oo~ WNEO

1000000 0.00305354

0.00295727
0.00286142
0.00276605
0.00267121
0.00257695
0.00248332
0.00239040
0.00229825
0.00220696
0.00211662
0.00202731
0.00193916
0.00185227
0.00176678
0.00168283
0.00160059
0.00152021
0.00144191
0.00136588
0.00129238
0.00122164
0.00115397
0.00108967
0.00102909
0.00097262
0.00092068
0.00087373
0.00083229
0.00079693
0.00076826
0.00074699
0.00073386
0.00072973
0.00073551
0.00075223
0.00078100
0.00082308
0.00087983
0.00095276
0.00104354
0.00115400
0.00128618
0.00144229
0.00162481
0.00183646
0.00208024
0.00235944
0.00267772
0.00303910
0.00344802
0.00390936
0.00442852
0.00501146

0.00300100
0.00290472
0.00280957
0.00271560
0.00261982
0.00252731
0.00243407
0.00234115
0.00225061
0.00215842
0.00207073
0.00198043
0.00189369
0.00180851
0.00172285
0.00163985
0.00155953
0.00147987
0.00140296
0.00132781
0.00125548
0.00118704
0.00112150
0.00105782
0.00100023
0.00094561
0.00089608
0.00085272
0.00081346
0.00078147
0.00075679
0.00073943
0.00073153
0.00073101
0.00074317
0.00076489
0.00080041
0.00084979
0.00091520
0.00099565
0.00109652
0.00121792
0.00136105
0.00152927
0.00172707
0.00195367
0.00221478
0.00251193
0.00285000
0.00323404
0.00366826
0.00415490
0.00470305
0.00531785

0.99699900
0.99709528
0.99719043
0.99728440
0.99738018
0.99747269
0.99756593
0.99765885
0.99774939
0.99784158
0.99792927
0.99801957
0.99810631
0.99819149
0.99827715
0.99836015
0.99844047
0.99852013
0.99859704
0.99867219
0.99874452
0.99881296
0.99887850
0.99894218
0.99899977
0.99905439
0.99910392
0.99914728
0.99918654
0.99921853
0.99924321
0.99926057
0.99926847
0.99926899
0.99925683
0.99923511
0.99919959
0.99915021
0.99908480
0.99900435
0.99890348
0.99878208
0.99863895
0.99847073
0.99827293
0.99804633
0.99778522
0.99748807
0.99715000
0.99676596
0.99633174
0.99584510
0.99529695
0.99468215

54
55
56
57
58

60
61
62
63
64
65
66

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
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906425
900982
894879
888051
880428
871936
862497
852030
840453
827680
813625
798204
781335
762938
742945
721293
697936
672843
646008
617446
587208
555378
522082
487488
451813
415325
378336
341209
304343
268168
233132
199683
168251
139224
112926
89598
69382
52304
38280
27116
18527
12166
7646
4578
2599
1391
698
326
141
56
20

[o}

OO OO0 OO0 OCDODOO0COCOON

0.00566474
0.00639560
0.00721202
0.00812281
0.00913768
0.01026734
0.01152362
0.01291953
0.01446946
0.01618926
0.01809640
0.02021017
0.02255183
0.02514485
0.02801510
0.03119110
0.03470433
0.03858949
0.04288486
0.04763267
0.05287949
0.05867666
0.06508084
0.07215451
0.07996656
0.08859299
0.09811763
0.10863292
0.12024083
0.13305379
0.14719586
0.16280382
0.18002855
0.19903645
0.22001105
0.24315477
0.26869087
0.29686557
0.32795046
0.36224506
0.40007972
0.44181880
0.48786416
0.53865901
0.59469220
0.65650286
0.72468563
0.79989637
0.88285840
0.97436953
1.07530965
1.18664924
1.30945863
1.44491836
1.59433042
1.75913086
1.94090349
2.14139515
2.36253248
2.60644040
2.87546255
3.17218377
3.49945494
3.86042038
4.25854803
4.69766275
5.18198308

5135
5762
6454
7213
8045
8952
9939
11008
12161
13400
14724
16132
17621
19184
20814
22498
24221
25965
27704
29411
31051
32588
33978
35174
36130
36795
37121
37067
36594
35681
34316
32509
30290
27711
24845
21786
18642
15527
12554
9823
7412
5375
3730
2466
1546
913
506
261
124
55
22

~

OO OO0 OO0 O0ODO0OO0OO0ODOOO W

0.00600491
0.00677372
0.00763008
0.00858397
0.00964531
0.01082534
0.01213569
0.01358755
0.01519776
0.01698120
0.01895345
0.02113370
0.02354560
0.02620527
0.02914348
0.03238212
0.03595315
0.03988300
0.04421307
0.04897270
0.05420566
0.05995196
0.06626162
0.07318129
0.08075908
0.08906037
0.09813235
0.10804522
0.11886260
0.13064944
0.14347666
0.15740949
0.17252201
0.18888985
0.20657776
0.22563004
0.24614453
0.26812481
0.29164054
0.31675026
0.34333675
0.37152721
0.40125556
0.43228484
0.46479415
0.49820273
0.53295129
0.56748466
0.60283688
0.64285714
0.70000000
0.66666667
1.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

0.99399509
0.99322628
0.99236992
0.99141603
0.99035469
0.98917466
0.98786431
0.98641245
0.98480224
0.98301880
0.98104655
0.97886630
0.97645440
0.97379473
0.97085652
0.96761788
0.96404685
0.96011700
0.95578693
0.95102730
0.94579434
0.94004804
0.93373838
0.92681871
0.91924092
0.91093963
0.90186765
0.89195478
0.88113740
0.86935056
0.85652334
0.84259051
0.82747799
0.81111015
0.79342224
0.77436996
0.75385547
0.73187519
0.70835946
0.68324974
0.65666325
0.62847279
0.59874444
0.56771516
0.53520585
0.50179727
0.46704871
0.43251534
0.39716312
0.35714286
0.30000000
0.33333333
0.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
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Model: 5, Sex: Male
T
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Figure 1: GM (2,2) male survival and curve of death
functions

Moraly. Sex: Nl

L] [} 8 100

Survival Function. Sex: Male
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Prcuc oty Sl i Sec Ml
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4 [ 8 100

Figure 2: GM (2,2) male’s mortality, survival and
curve of death functions

The survival I, function in Figs. 1 and 2 representing
the expected number of lives surviving to age X out of
an initial group of 1000000 lives clearly forms

asymptote on X axis.

In Tablel and within 0 < X <1, the neonatal
mortality rate intensity seems to be very high but
declines more sharply for male.The probability density
function of the distribution of deaths represents an
important mortality statistics since it is an immediate
indication of key longevity measures describing how
long a population will live on the average and the extent
of variability of ages at death. In Table 1 with respect
to male, the curve of death function |, describes the

expected density of deaths at age X with respect to the
population of lives surviving to ageX and
coincidentally for the male, there is a local minimum of

I.p, around10 where morality declines. The local

————————
119

extreme points of IX,uX corresponds to points of

inflexion of |, following the observations below,

d __dfy L rd)_dfd 6% (92)
ax U X 4) = o|><('*x|x dx'*j_dx( dx'*)_ o

d d d

— b, =, — +l,—u,. 93

dX X/LlX ﬂX dX X X dX ﬂX ( )
Observing that ||, = —z,1, , we have

d :

alxlux = Hy (_:uxlx)_'_lx (,UX) (94)
The point at which | inflexes becomes

d '

&Ixﬂx=lux (_:uxlx)_'_lx (lux)zo (95)
So that

, d
iy = g Mo (96)

Since the functions {IX,,uX,(IX,uX )} are functionally

related, their behaviors are jointly examined through
mortality surface and three dimensional plots as
displayed in Fig. 3.

Sex: Male

Survival Function 0 o

Figure 3: GM (2,2) surface plot for male’s mortality,
survival and curve of death functions

Notably, the function s, =GM (2, 2) >0 s

continuous for all X >0 and satisfies the condition,

Iyxdx =00, 97)
0

Although in Table 1, the probability of death satisfies
0<q, <1, the mortality rate intensity is increasing

and 24, >1 towards the end of the mortality table. The

implication in Table 1 is that there is a mortality risk of
having a higher rate of death than expected. The high
rate of mortality (jumps) may have occurred as a result
of the sudden occurrence of pandemics or war. This is

because (, is a probability whereas 4, is a rate.
Consequently at an infinitesimally small time A in




Q

Table 1 during senescence, the mortality intensity is
high and becomes,

-1

X+A

1. 1.1 . I
H, =" |im=>**2_ X - |lim—=*—
Ix A—0 A A0

—lim 2% (98)
A0 A
where 0 < A <1and consequently, the above argument

explains clearly the mathematical distinction between
the mortality rate intensity £/, and the probability of

death Q, .

1
For instance if AZE' then ,uxz3(qu] and
3

therefore, 4, >1
The highest age in the mortality table is given by

Q= Sup{é’ eR"|F (€) Sl}. Consequently, it is

numerically determined from the estimated |, to be the

first age where ¢, =1 whereas Q, (M )=106 for

the males. To study the behaviour of mortality pattern
beyond age 106, the male’s intensity is extended to age
120 where the mortality rates at extreme age still
exhibit exponential increase. This behaviour may not be

valid in practice.
The omega age represents the age after which lives

rarely survive because for allx>Q,
I, =1, =..=0and consequently,
. . (1 -1 :

limg, = Ilmlx—x+1 =lim(1-p,)=0. But the
x—0 x—0 Ix x—0

probability of death , =1. These two arguments
explain clear inconsistency of mortality behaviour in
death probability function at extreme ages (], in Table

1. For the male in Table 1, the trajectories of | is
observed to decline steeply at perinatality till infancy
and exhibiting at least a point of inflexion to X axis as
seen in Figure 1.

The argument that no life exists after age 106 is
supported as follows (i) The set €2 containing the
domain of mortality validity is assumed to have no limit
point (ii) then we can show that €2 is closed. € is
closed iff it contains all its limit points. Certainly by

(i), © has no limit point by the hypothesis of the
theorem, consequently, there are no limit point of Q)
which are outside of ) (which are not contained in Q

), so Qcontains all its limit points. Therefore Q is
closed.
In Table 1, for male and within the age intervals

0<x<31, 81<x<120, we observe that
1, > Q, however, within the interval 33<X<79,

u, <Q, .By reason of equation (15),

———————
120
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1

19, =j|x+§,tlx+§d§. If 1., .4, were increasing,
0

then —1,, .44, >0 and at the beginning of the

interval 0 <x<1, 1,.g, > 1,2, = 0, > 4, provided

the curve | g s

d

——I, =14, it then follows that when Iz, is

dx

increasing. By definition,

d
increasing, then clearly d—lX is decreasing and the
X

gradient of the tangent to the curve IX will be

decreasing. The survival function | will then be
concave to the age axis. Consequently, if the survival
function |, is concave to the age axis, the condition
q, > u, is satisfied. However, if the survival function
|, is convex to the age axis q, < £, . In Table 1 for
male, s, =, almost at ages {32,80}. The
observation that £, =, in Table 1 occurs whenever

the survival function |, is almost linear in the form

|X—|X+§=X+§—X=§ (99)
I —1 X+1—X

X X+1

for0<<£ <1 and

Ix+§ = (1_§)Ix +§Ix+l (100)
lllx+f:i d|x+§ :i(lm_lx):(|x+1_|x):(Ix+1_|x)XL(101)
Cold(x+g) Lod(x+g) L L L
Ix+ _Ix 1 Ix+ _Ix 1 M
”X+f:(l|)xl _( 1| )le_q (102)
x X+& x 3 Px éjqu

X

Consequently attime £ =0, Q, = 1.

The progressive increase in the mortality rate intensity
for male is displayed in Fig. 1. Most life tables such as
Commissioner’s Standard Ordinary table (CSO) type

and many published works do not account for L1, based

on the governing mortality intensities because of the
computational intractability associated with their
estimations. The male’s ageing parameter our model
is confirmed to satisfy the globally accepted ageing
interval 1.08 < C <1.12. An interesting point in the

modelling of GM (2,2) is the novelty of the

estimation technique through successive differencing
applied. The technique gives better estimation for the
ageing parameter than the maximum likelihood method
(MLE) commonly used in most estimations.
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The MLE technique does not often satisfy the globally
accepted interval of validity and hence may be doomed
in mortality analysis.When a life buys life insurance,
the life is suspected to have a substandard health issues
and hence such a life will have substandard mortality.
As a result, life insurers will be interested in the
functional  relationship  between standard and
substandard mortality during the period of insurance.
We assume here that the difference between standard
and substandard mortality is the extra mortality risk

which can be constant if Ay, —Au,..., =0,
decreasing when Age,, — Ay, >0and increasing

if A/ux+s _A:ux+s+l <0

Conclusion

In this study, we have investigated different age
dependent mortality functions to generate with higher
precision mortality rate intensities and life insurance
products. The rationale behind the use of successive
differencing approach is to ensure that mortality rate
estimation is technically precise and appropriate to the
mortality risk evaluation. Secondly in measuring the
mortality intensities, the central problem is not
concerned about the choice of the appropriate
functional form which seems very important to our
problem areas but rather a combination of analytical
functions and actuarial assumptions that are critical in
creating the pay-off space for the life insurance claim
contingencies and life annuity benefits together with
developing analytically robust life table models in order
to solve the estimation problem of the non-linear
mortality intensities so as to produce good underwriting
results.The different numerical estimation methods and
assumptions adopted in this study evolve from varying
underwriting experiences emanating from: (i) various
forms of life insurance valuation and underwriting
techniques, (ii) the extent of their complexities and (iii)
the level to which actuary usually advises life insurers
on the methods to be applied when carrying out
actuarial valuations.

Finally, our results suggest that the underlying
functions applied such as successive differencing is
well suited to the estimation of non-linear parsimonious
mortality functions which satisfies the Occam’s razor.
If life offices do not apply accurate mortality table
based on correct estimations, they will be vulnerable to
the risk of paying much more death benefits than
expected. Consequently life offices are therefore
advised to reserve for mortality risks to mitigate against
being insolvent.
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