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Most epidemiological models are formulated by either incorporating constant 

or logistic recruitment rates into the susceptible class by researchers. The role 

these recruitment rates play are often not emphasized in most mathematical 

modelling studies. In this paper, three mathematical models of epidemiology 

are presented. The next generation operator method is used to compute the 

reproduction number for each of the models. In each of the models (case I, case 

II and case III) a scenario where a constant and logistic recruitment rate are 

incorporated. It was observed in case I that, the reproduction number of the 

model with logistic recruitment rate is less than the reproduction number from 

the model with constant recruitment rate. Further, in case II, the reproduction 

number from the model with both constant and logistic recruitment rates are the 

same. Finally, in case III, it was observed that the human reproduction number 

from the model with logistic recruitment rate is higher than the human 

reproduction number from the model with constant recruitment rate. 

Consequently, it is recommended that more mathematical models of 

epidemiology should be deployed as an extension of this study for a reasonable 

conclusion to be drawn on the roles of these recruitment rates. 
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Introduction 

Over the last three decades, mathematical models have 

been deployed by several researchers in modelling 

natural phenomenon or occurrences/events in our 

environment with the sole aim of analyzing, 

understanding and taking informed decisions from the 

results of such studies. Some of these models have 

been successfully designed and applied to infectious 

diseases, see for example [1–5].  

Mathematical models have over the years provided 

useful insights into the transmission dynamics, 

prevention and control of infectious diseases [1, 6]. 

These models when successfully developed often 

assume that the recruitment rates of individuals into 

the susceptible class are either by constant rate, 

logistics recruitment rate or population dependent.  

In this study, however, the emphasis shall be laid on 

the inclusion of constant and logistic recruitment rates 

into the susceptible class. It is instructive to note that 

some mathematical models are formulated by 

incorporating constant recruitment rates into the 

susceptible class, (see for example, [1, 6–15] while 

others are developed by incorporating logistic 

recruitment rate into the susceptible class of either 

human or animal sub-population, see for example, 

[16–18]. Mathematical models developed by 

incorporating constant recruitment rate into the 

susceptible class often assume that a population grows 

proportionately with the populations current size as 

noted in [4] and of course, those designed and 

analyzed incorporating the logistic recruitment rate 

into the susceptible class often assume that the 

population changes at all time but obviously not more 

than the maximum population size that a particular 

environment can support (called the carrying capacity, 

𝐾) [4]. 

Most developed models of epidemiology often 

incorporate constant or logistic recruitment rates in 

their studies, see for example, [1, 3, 5, 6, 11, 14]. In all 

the aforementioned studies, none to the best of our 

knowledge have looked at the role of incorporating 

constant and logistic recruitment rates into the 

susceptible class as it affects the reproduction number. 

The goal of this paper, therefore, is to make a 

comparative study of the role of constant and logistic 

recruitment rates in epidemiological models 

particularly as it affects the reproduction numbers.  

 

Model Formulation 
In this section, a sample of mathematical models are 

presented to study the role of constant and logistic 

recruitment rates in some epidemiological models as it 

affects their reproduction numbers. The variables and 

parameters of the model equations (1) and (2) are 

presented in Table 1. 
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Case I: (a) An SIR model with constant recruitment 

rate (A generalized SIR model) 

 

Table 1: Variables and parameters of models (1) 

and (2) 

Variables/Parameters Interpretation 

S Susceptible individuals 

I Infected individuals 

R Recovered individuals 

𝜇 Natural death rate 

𝛾 Progression rate 

𝛿 Disease-induced death rate 

𝛼 Infection rate 

𝑟 Birth rate 

K Carrying capacity 

 

𝑑𝑆(𝑡)

𝑑𝑡
= Λ − 𝛼𝑆𝐼 − 𝜇𝑅,

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛼𝑆𝐼 −  𝜇 + 𝛾 + 𝛿 𝐼,

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅.

                                  (1) 

(b) An SIR model with logistic recruitment rate (A 

generalized SIR model) 
𝑑𝑆 𝑡 

𝑑𝑡
= 𝑟𝑁  1 −

𝑁

𝐾
 − 𝛼𝑆𝐼 − 𝜇𝑅,

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛼𝑆𝐼 −  𝜇 + 𝛾 + 𝛿 𝐼,

𝑑𝑅 𝑡 

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅.

                                   (2)  

 

Case II: (a) A diphtheria model with constant 

recruitment rate by Kanchanarat et al. [4] 

In models (3) and (4), the interaction is between the 

susceptible (𝑆), vaccinated (𝑉), exposed (𝐸), 

asymptomatic (𝐴), infected (𝐼) and recovered (𝑅) 

individuals at time, 𝑡. The parameters of the model are 

tabulated in Table 2. 

 

Table 2: Parameters of models (3) and (4) 

Parameters Interpretation 

𝛽 Transmission rate 

𝑎 Proportion of infectious population 

𝛿 Modification parameter 

𝜙 Rate of vaccination 

𝑟 Birth rate 

𝜎 Progression rate 

𝜇 Natural death rate 

𝛼 Diphtheria mortality rate 

𝜀 Waning rate of vaccine 

𝜃 Progression rate 

𝛾 Recovery rate of asymptomatic individuals 

𝜏 Recovery rate of infected individuals 

𝐾 Carrying capacity 

 

 

𝑑𝑆(𝑡)

𝑑𝑡
= Λ −

𝛽𝑆 (𝛿𝐴+𝐼)

𝑁
− (𝜇 + 𝜙)𝑆 + 𝜀𝑉,

𝑑𝑉(𝑡)

𝑑𝑡
= 𝜙𝑆 + 𝜃𝑅 − (𝜇 + 𝜀)𝑉,

𝑑𝐸(𝑡)

𝑑𝑡
=

𝛽𝑆 (𝛿𝐴+𝐼)

𝑁
− (𝜇 + 𝜎)𝐸,

𝑑𝐴(𝑡)

𝑑𝑡
=  1 − 𝛼 𝜎𝐸 −  𝜇 + 𝛾 𝐴,

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑎𝜎𝐸 − (𝜇 + 𝛼 + 𝜏)𝐼,

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐴 + 𝜏𝐼 − (𝜇 + 𝜃)𝑅

                  (3)  

 

(b) A diphtheria model with logistic recruitment 

rate by Kanchanarat et al. [4]. 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝑟𝑁  1−

𝑁

𝐾
 −

𝛽𝑆 𝛿𝐴+𝐼 

𝑁
−  𝜇 + 𝜙 𝑆 + 𝜀𝑉,

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝜙𝑆 + 𝜃𝑅 − (𝜇 + 𝜀)𝑉,

𝑑𝐸(𝑡)

𝑑𝑡
=

𝛽𝑆 𝛿𝐴+𝐼 

𝑁
−  𝜇 + 𝜎 𝐸,

𝑑𝐴(𝑡)

𝑑𝑡
=  1− 𝑎 𝜎𝐸 −  𝜇 + 𝛾 𝐴,

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑎𝜎𝐸 −  𝜇 + 𝛼 + 𝜏 𝐼,

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐴 + 𝜏𝐼 −  𝜇 + 𝜃 𝑅.

        (4)  

Case III: (a) Monkeypox mathematical model with 

constant recruitment rate by Ashezua et al. [5]. 

In models (5) and (9), the interaction is between 

human and animal population. For the human 

population, the susceptible (𝑆𝐻), vaccinated (𝑉𝐻), 

exposed (𝐸𝐻), asymptomatic (𝐴𝐻), symptomatic (𝐼𝐻), 

isolated (𝑇𝐻) and recovered (𝑅) individuals interact at 

time, 𝑡 while for the animal population, susceptible 

(𝑆𝐴), exposed (𝐸𝐴), infected (𝐼𝐴) and recovered (𝑅𝐴) 

animals interact at time, 𝑡. 
 

Table 3: The parameters values of models (5) & (9) 

Param. Interpretation 

Λℎ  Recruitment rate for susceptible human 

𝑣 Vaccination rate of susceptible human 

𝜔 Waning rate of the monkeypox vaccine 

𝜇ℎ  Natural death rate for the humans 

𝛿ℎ  Monkeypox induced death rate 

𝜃 Progression rate from  𝐸𝐻to 𝐴𝐻  

𝜌 Proportion of the exposed persons moving to class 𝐴𝐻  

𝜙 Progression from 𝐴𝐻  to 𝐼𝐻  

𝜎 Natural recovery rate of the asymptomatic individuals 

𝜏 Treatment rate for the symptomatic individuals 

𝜂 Modification parameter 

𝜀 Rate of public awareness campaign 

𝜓 Efficacy of public awareness campaign 

𝛽ℎ  Probability of transmitting monkeypox from human-to-

human 

 𝛽𝑎 ,𝛽𝑟  Probability of transmitting monkeypox from animal-to-

human and animal-to-animal 

Λ𝑎  Recruitment rate into the susceptible animal compartment 

𝜇𝑎  Natural death rate for the animal population 

𝜑 Progression rate from 𝐸𝐴 to 𝐼𝐴. 

𝛾𝑎  Recovery rate for the animal population 

𝛿𝑎  Disease induced death rate for the animal population 

    Ashezua et al. (2024). Comparative study of the role of constant & logistic recruitment rate… 
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𝑑𝑆𝐻(𝑡)

𝑑𝑡
= Λℎ − 𝜆𝐻𝑆𝐻 + 𝜔𝑉𝐻 −  𝑣 + 𝜇ℎ 𝑆𝐻 ,

𝑑𝑉𝐻 (𝑡)

𝑑𝑡
= 𝑣𝑆𝐻 −  𝜔 + 𝜇ℎ 𝑉𝐻 ,

𝑑𝐸𝐻(𝑡)

𝑑𝑡
= 𝜆𝐻𝑆𝐻 −  𝜃𝜌 + 𝜃(1− 𝜌) + 𝜇ℎ  𝐸𝐻 ,

𝑑𝐴𝐻(𝑡)

𝑑𝑡
= 𝜃𝜌𝐸𝐻 −  𝜎 + 𝜙 + 𝜇ℎ 𝐴𝐻 ,

𝑑𝐼𝐻 (𝑡)

𝑑𝑡
= 𝜙𝐴𝐻 + 𝜃(1− 𝜌)𝐸𝐻 −  𝜏 + 𝜇ℎ + 𝛿ℎ 𝐼𝐻 ,

𝑑𝑇𝐻 (𝑡)

𝑑𝑡
= 𝜏𝐼𝐻 −  𝛾ℎ + 𝜇ℎ + 𝛿ℎ 𝑇ℎ

𝑑𝑅𝐻 (𝑡)

𝑑𝑡
= 𝜎𝐴𝐻 + 𝛾ℎ𝑇𝐻 − 𝜇ℎ𝑅𝐻 ,

𝑑𝑆𝐴(𝑡)

𝑑𝑡
= Λ𝑎 − 𝜆𝐴𝑆𝐴 − 𝜇𝑎𝑆𝐴 ,

𝑑𝐸𝐴(𝑡)

𝑑𝑡
= 𝜆𝐴𝑆𝐴 −  𝜑 + 𝜇𝑎 𝐸𝐴 ,

𝑑𝐼𝐴 (𝑡)

𝑑𝑡
= 𝜑𝐸𝐴 −  𝛾𝑎 + 𝜇𝑎 + 𝛿𝑎 𝐼𝐴 ,

𝑑𝑅𝐴 (𝑡)

𝑑𝑡
= 𝛾𝑎𝐼𝐴 − 𝜇𝑎𝑅𝐴 .

         (5) 

where 𝜆𝐻  and 𝜆𝐴  are as given in equations (6) and (7), 

respectively. 

𝜆𝐻 =  1 − 𝜀𝜓  
𝛽ℎ 𝐼𝐻 + 𝜂𝐴𝐻 

𝑁𝐻
+
𝛽𝑎𝐼𝐴
𝑁𝐴

  6  

 

Similarly, the susceptible animals acquire the infection 

following effective contact with an infected animal 

(i.e., those in the 𝐼𝐴  class) at a rate 

𝜆𝐴 =
𝛽𝑟𝐼𝐴
𝑁𝐴

(7)  

with, 
𝑁 𝑡 = 𝑁𝐻 𝑡 + 𝑁𝐴 𝑡 ,

𝑁𝐻 𝑡 = 𝑆𝐻 𝑡 + 𝑉𝐻 𝑡 + 𝐸𝐻 𝑡 + 𝐴𝐻 𝑡 + 𝐼𝐻 𝑡 + 𝑇𝐻 𝑡 + 𝑅𝐻 𝑡 ,

𝑆𝐴 𝑡 + 𝐸𝐴 𝑡 + 𝐼𝐴 𝑡 + 𝑅𝐴 𝑡 .

   (8)  

 

(b) Monkeypox mathematical model with logistic 

recruitment rate by Ashezua et al. [5]. 
𝑑𝑆𝐻(𝑡)

𝑑𝑡
= 𝑟𝑁𝐻  1−

𝑁𝐻

𝐾
 − 𝜆𝐻𝑆𝐻 + 𝜔𝑉𝐻 −  𝑣 + 𝜇ℎ 𝑆𝐻 ,

𝑑𝑉𝐻 (𝑡)

𝑑𝑡
= 𝑣𝑆𝐻 −  𝜔 + 𝜇ℎ 𝑉𝐻 ,

𝑑𝐸𝐻(𝑡)

𝑑𝑡
= 𝜆𝐻𝑆𝐻 −  𝜃𝜌 + 𝜃(1− 𝜌) + 𝜇ℎ 𝐸𝐻 ,

𝑑𝐴𝐻(𝑡)

𝑑𝑡
= 𝜃𝜌𝐸𝐻 −  𝜎 + 𝜙 + 𝜇ℎ 𝐴𝐻 ,

𝑑𝐼𝐻 (𝑡)

𝑑𝑡
= 𝜙𝐴𝐻 + 𝜃(1− 𝜌)𝐸𝐻 −  𝜏 + 𝜇ℎ + 𝛿ℎ 𝐼𝐻 ,

𝑑𝑇𝐻 (𝑡)

𝑑𝑡
= 𝜏𝐼𝐻 −  𝛾ℎ + 𝜇ℎ + 𝛿ℎ 𝑇ℎ

𝑑𝑅𝐻 (𝑡)

𝑑𝑡
= 𝜎𝐴𝐻 + 𝛾ℎ𝑇𝐻 − 𝜇ℎ𝑅𝐻 ,

𝑑𝑆𝐴(𝑡)

𝑑𝑡
= Λ𝑎 − 𝜆𝐴𝑆𝐴 − 𝜇𝑎𝑆𝐴 ,

𝑑𝐸𝐴(𝑡)

𝑑𝑡
= 𝜆𝐴𝑆𝐴 −  𝜑 + 𝜇𝑎 𝐸𝐴 ,

𝑑𝐼𝐴 (𝑡)

𝑑𝑡
= 𝜑𝐸𝐴 −  𝛾𝑎 + 𝜇𝑎 + 𝛿𝑎 𝐼𝐴 ,

𝑑𝑅𝐴 (𝑡)

𝑑𝑡
= 𝛾𝑎𝐼𝐴 − 𝜇𝑎𝑅𝐴 .

          (9)   

where 𝜆𝐻  and 𝜆𝐴  are as given in equations (10) and 

(11), respectively. 

𝜆𝐻 = (1− 𝜀𝜓) 
𝛽ℎ 𝐼𝐻 + 𝜂𝐴𝐻 

𝑁𝐻
+
𝛽𝑎 𝐼𝐴
𝑁𝐴

 (10)  

Similarly, the susceptible animals acquire the infection 

following effective contact with an infected animal 

(i.e., those in the 𝐼𝐴  class) at a rate 

𝜆𝐴 =
𝛽𝑟𝐼𝐴
𝑁𝐴

(11) 

with, 
𝑁 𝑡 = 𝑁𝐻(𝑡) + 𝑁𝐴(𝑡),

𝑁𝐻 𝑡 = 𝑆𝐻 𝑡 + 𝑉𝐻 𝑡 + 𝐸𝐻 𝑡 + 𝐴𝐻 𝑡 + 𝐼𝐻 𝑡 + 𝑇𝐻 𝑡 + 𝑅𝐻 𝑡 ,

𝑁𝐴 𝑡 = 𝑆𝐴(𝑡) + 𝐸𝐴(𝑡) + 𝐼𝐴(𝑡) + 𝑅𝐴(𝑡)

   (12) 

Mathematical Analysis 

In this section, a sample of mathematical models are 

presented to study the role of constant and logistic 

recruitment rates in some epidemiological models.  

 

Case I: (a) An SIR model with constant recruitment 

rate [Generalized model]. 

The disease-free equilibrium of the model (1) is given 

by 𝐸0 =  𝑆0, 𝐼0,𝑅0 =  
Λ

𝜇
, 0,0 .Using the notation in 

[19], the non-negative matrix 𝐹, of new infection 

terms and the M-matrix, 𝑉, of transition terms 

associated with the model (1) are 

𝐹 =
𝛼Λ

𝜇
 and 𝑉 = (𝜇 + 𝛾 + 𝛿). 

It follows that the basic reproduction number of the 

model (1), denoted by 𝑅0 = 𝜌 𝐹𝑉−1  (where 𝜌 

denotes the spectral radius), is given by 

𝑅0 =
𝛼Λ

𝜇(𝜇 + 𝛾 + 𝛿)
(13)  

 

(b) An SIR model with logistic recruitment rate 

[Generalized model]. 

Here, the disease-free equilibrium of the model is 

𝐸0 =  𝑆0, 𝐼0 ,𝑅0 = (𝐾, 0,0). The non-negative matrix 

𝐹, of new infection terms and the M-matrix, 𝑉, of 

transition terms associated with the model (2) are 

𝐹 = 𝛼𝐾 and 𝑉 = (𝜇 + 𝛾 + 𝛿). 

Hence, the basic reproduction number of the model 

(2), denoted by 𝑅0, is given by 

𝑅0 =
𝛼𝐾

𝜇(𝜇 + 𝛾 + 𝛿)
(14) 

 

Case II: (a) A diphtheria model with constant 

recruitment rate by Kanchanarat et al. [4]. 

The disease-free equilibrium of the model (3) is given 

by 

𝐸0 =  𝑆0 ,𝑉0,𝐸0 ,𝐴0, 𝐼0 ,𝑅0 =

 
𝜇(𝜇+𝜀+𝜙)

(𝜇+𝜀)
,
𝜙𝜇 (𝜇+𝜀+𝜙)

(𝜇+𝜀)2 0,0,0,0 .  

The non-negative matrix 𝐹, of new infection terms and 

the M-matrix, 𝑉, of transition terms associated with 

the model (3) are 

Lafia Journal of Scientific & Industrial Research, 2(2) 



104
 

𝐹 =  
0

𝑘1𝛿𝛽

 𝑘1+𝜙 

𝑘1𝛽

 𝑘1+𝜙 

0 0 0
0 0 0

  

and 

𝑉 =  

𝑘3 0 0
−𝑘5 𝑘4 0
−𝑎𝜎 0 𝑘6

  

where, 𝑘3 = (𝜇 + 𝜎), 𝑘4 = (𝜇 + 𝛾), 𝑘5 = (1− 𝑎)𝜎 

and 𝑘6 = (𝜇 + 𝛼 + 𝜏). 

Thus, the basic reproduction number of the model (3), 

denoted by 𝑅𝑣 , is given by 

𝑅𝑣 =
𝑘1𝛽 𝑎𝜎𝑘4 + 𝛿𝑘5𝑘6 

𝑘3𝑘4𝑘6 𝑘1 + 𝜙 
(15)  

 

(b) A diphtheria model with logistic recruitment 

rate by Kanchanarat et al. [4]. 

The disease-free equilibrium state of the model (4) is 

𝐸0 =  𝑆0,𝑉0,𝐸0 ,𝐴0, 𝐼0,𝑅0 =

 
(𝑟−𝜇 )(𝜇+𝜀)𝐾

𝑟(𝜇+𝜙+𝜀)
,

(𝑟−𝜇)𝜙𝐾

𝑟(𝜇+𝜙+𝜀)
, 0,0,0,0 . 

The non-negative matrix 𝐹, of new infection terms and 

the M-matrix, 𝑉, of transition terms associated with 

the model (4) are 

𝐹 =  
0

𝛽𝛿 𝜇 + 𝜀 

 𝜇 + 𝜙 + 𝜀 

𝛽 𝜇 + 𝜀 

 𝜇 + 𝜙 + 𝜀 
0 0 0
0 0 0

 and

𝑉 =  

(𝜇 + 𝜎) 0 0

−(1− 𝑎)𝜎 (𝜇 + 𝛾) 0
−𝑎𝜎 0 (𝜇 + 𝛼 + 𝜏)

 

 

respectively. Hence, the reproduction number of the 

model (4) is computed to be 

𝑅𝑣 =
𝛽𝜎 (𝜇+𝜀)[𝑎(𝜇+𝛾)+𝛿(1−𝑎)(𝜇+𝛼+𝜏)]

(𝜇+𝜎)(𝜇+𝛾)(𝜇+𝛼+𝜏)(𝜇+𝜙+𝜀)
 16  

 

Case III: (a) Monkeypox mathematical model (5) 

with constant recruitment rate by Ashezua et al. 

[5]. 

The disease-free equilibrium of the model (5), is given 

by 𝐸0 =  𝑆𝐻
0 ,𝑉𝐻

0,𝐸𝐻
0 ,𝐴𝐻

0 , 𝐼𝐻
0 ,𝑇𝐻

0,𝑅𝐻
0 , 𝑆𝐴

0,𝐸𝐴
0 , 𝐼𝐴

0,𝑅𝐴
0 , 

where 

𝑆𝐻
0 =

Λℎ𝑘2

𝑘1𝑘2−𝑣𝜔
,𝑉𝐻

0 =
𝑣Λℎ

𝑘1𝑘2−𝑣𝜔
,𝐸𝐻

0 = 0,𝐴𝐻
0 = 0, 𝐼𝐻

0 =

0,𝑇𝐻
0 = 0,𝑅𝐻

0 = 0, 𝑆𝐴
0 =

Λ𝑎

𝜇𝑎
,𝐸𝐻

0 = 0, 𝐼𝐴
0 = 0,𝑅𝐴

0 = 0, 

with 𝑘1 =  𝑣 + 𝜇ℎ  and 𝑘2 =  𝜔 + 𝜇ℎ . 

 

The local stability of 𝐸0 will be determined using the 

next generation operator method on model (4). Using 

the notation in van den Driessche and Watmough [19], 

it follows that matrices 𝐹 and 𝑉, for the new infection 

terms and the remaining transition terms, respectively, 

are given by 

 

𝐹 =

 

 
 

0 𝑦1 𝑦2 0 𝑦3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 𝛽𝑟
0 0 0 0 0 

 
 

 and 

𝑉 =

 

 
 

𝑘3 0 0 0 0
−𝜃𝜌 𝑘4 0 0 0

−𝜃(1− 𝜌) −𝜙 𝑘5 0 0
0 0 0 𝑘7 0
0 0 0 −𝜑 𝑘8 

 
 

 

where, 

 

 

 

𝑦1 =
(1 − 𝜀𝜓)𝛽ℎ𝜂𝑘2

𝑣 + 𝑘2

, 𝑦2 =
(1 − 𝜀𝜓)𝛽ℎ𝑘2

𝑣 + 𝑘2

, 𝑦3 =
(1 − 𝜀𝜓)𝛽𝑎𝜇𝑎Λℎ𝑘2

Λ𝑎  𝑘1𝑘2 − 𝑣𝜔 
,

𝑘3 =  𝜃𝜌 + 𝜃(1 − 𝜌) + 𝜇ℎ , 𝑘4 =  𝜎 + 𝜙 + 𝜇ℎ , 𝑘5 =  𝜏 + 𝜇ℎ + 𝛿ℎ , 𝑘7 =  𝜑 + 𝜇𝑎 ,

     (17)              

 

It follows that the reproduction numbers of the model (4) are 

𝑅0 =  𝑅0ℎ ,𝑅0𝑎                                     (18)  

with 𝑅0ℎ  and 𝑅0𝑎  being the monkeypox induced reproduction numbers for the humans and animals, respectively, 

which are given by 

𝑅0ℎ =
(1 − 𝜀𝜓)𝛽ℎ𝑘2 𝜂𝑘5𝜃𝜌 + 𝜙𝜃𝜌 + 𝑘4𝜃(1− 𝜌) 

𝑘3𝑘4𝑘5 𝑣 + 𝑘2 
                  (19)  

and 

𝑅0𝑎 =
𝛽𝑟𝜑

𝑘7𝑘8

                   (20)  

The reproduction number (human) for the model (5) was computed to be 

𝑅0ℎ =
(1 − 𝜀𝜓)𝛽ℎ𝑘2 𝜂𝑘5𝜃𝜌 + 𝜙𝜃𝜌 + 𝑘4𝜃(1 − 𝜌) 

𝑘3𝑘4𝑘5 𝑣 + 𝑘2 
         (21)  

where, 

𝑘2 =  𝜔 + 𝜇ℎ , 𝑘3 =  𝜃𝜌 + 𝜃(1 − 𝜌) + 𝜇ℎ , 𝑘4 =  𝜎 + 𝜙 + 𝜇ℎ , 𝑘5 =  𝜏 + 𝜇ℎ + 𝛿ℎ     (22)  

 

(b) Monkeypox mathematical model (9) with logistic recruitment rate by Ashezua et al. [5]. 

The disease-free equilibrium of the model (9), is given by, 

𝐸0 =  𝑆𝐻
0 ,𝑉𝐻

0,𝐸𝐻
0 ,𝐴𝐻

0 , 𝐼𝐻
0 ,𝑇𝐻

0,𝑅𝐻
0 ,𝑆𝐴

0,𝐸𝐴
0 , 𝐼𝐴

0,𝑅𝐴
0 , where, 
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𝑆𝐻
0 =

𝐾 𝑟−𝜇ℎ   𝜔+𝜇ℎ  

𝑟 𝑣+𝜔+𝜇ℎ  
,𝑉𝐻

0 =
𝑣𝐾 𝑟−𝜇ℎ   𝜔+𝜇ℎ  

𝑟 𝑣+𝜔+𝜇ℎ  
,𝐸𝐻

0 = 0,𝐴𝐻
0 = 0, 𝐼𝐻

0 = 0,𝑇𝐻
0 = 0,𝑅𝐻

0 = 0, 

𝑆𝐴
0 =

Λ𝑎

𝜇𝑎
,𝐸𝐻

0 = 0, 𝐼𝐴
0 = 0,𝑅𝐴

0 = 0, 

 

Using the notation in van den Driessche and Watmough [19], it follows that matrices 𝐹 and 𝑉, for the new infection 

terms and the remaining transition terms, respectively, are given by 

𝐹 =

 

 
 

0 𝑑1 𝑑2 0 𝑑3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 𝛽𝑟
0 0 0 0 0  

 
 

 and 𝑉 =

 

 
 

𝑘3 0 0 0 0
−𝜃𝜌 𝑘4 0 0 0
−𝑘5 −𝜙 𝑘6 0 0

0 0 0 𝑘8 0
0 0 0 −𝜑 𝑘9 

 
 

 

where, 𝑞 = (1− 𝜀𝜓),𝑑1 =
𝛽ℎ𝑞𝜂

(1+𝑣)
,𝑑2 =

𝛽ℎ𝑞

(1+𝑣)
,𝑑3 =

𝑞𝛽𝑎𝜇𝑎𝐾 𝑟−𝜇ℎ   𝜔+𝜇ℎ  

Λ𝑎𝑟 𝑣+𝜔+𝜇ℎ  
. 

 

It follows that the reproduction numbers of the model (9) are 

𝑅0 =  𝑅0ℎ ,𝑅0𝑎 (23)  

with 𝑅0ℎ  and 𝑅0𝑎  being the monkeypox induced reproduction numbers for the humans and animals, respectively, 

which are given by 

𝑅ℎ =
(1− 𝜀𝜓)𝛽ℎ  𝜃𝜌 𝜂𝑘6 + 𝜙 + 𝑘4𝑘5 

𝑘3𝑘4𝑘6(1 + 𝑣)
(24)  

and 

𝑅0𝑎 =
𝛽𝑟𝜑

𝑘8𝑘9

(25)  

 

The reproduction number (human) for the model (9) was computed to be 

𝑅ℎ =
(1− 𝜀𝜓)𝛽ℎ  𝜃𝜌 𝜂𝑘6 + 𝜙 + 𝑘4𝑘5 

𝑘3𝑘4𝑘6(1 + 𝑣)
(26)  

where, 

𝑘3 =  𝜃𝜌 + 𝜃(1 − 𝜌) + 𝜇ℎ  ,𝑘4 =  𝜎 + 𝜙 + 𝜇ℎ , 𝑘5 = 𝜃(1 − 𝜌), 𝑘6 =  𝜏 + 𝜇ℎ + 𝛿ℎ (27)  

 

Results and Discussions 

Here, we present the results of our findings in the 

previous section (particularly for equations (13), (14), 

(15), (16), (21) and (26)) using the parameter values 

on Table 4 (for case I), Table 5 (for case II) and Table 

6 (case III), respectively. The results obtained from the 

analysis are summarized in Table 7. 

 

Table 4: The parameters values used for models (1) 

and (2) 

Parameter Nominal value Reference 

Λ 10 Assumed 

𝜇 0.010 Assumed 

𝛾 0.60 Assumed 

𝜇ℎ  0.02 Assumed 

𝛿 0.20 Assumed 

𝛼 0.0023 Assumed 

 

 

 

Table 5: The parameters values of the diphtheria-

vaccine models (3) and (4) 

Parameter Value Reference 

𝛽 18.5 [4] 

𝑎 0.55 [20] 

𝛿 0.70 [20] 

𝜙 0.0406 [21] 

𝑟 0.0101 [22] 

𝜎 6 [23] 

𝜇 0.0011 [24] 

𝛼 0.05 [23] 

𝜀 0.0083 [23] 

𝜃 0.6667 [23] 

𝛾 2.1429 [23] 

𝜏 2.1429 [23] 

𝐾 10,000 [4] 
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Table 6: The parameters values of models (5) & (9) 

Parameter Nominal value (𝒚𝒆𝒂𝒓−𝟏) Reference 

Λℎ  0.029  [25] 

𝑣 0.85  [26] 

𝜔 0.60  Assumed 

𝜇ℎ  0.02  [25] 

𝛿ℎ  0.1  [27] 

𝜃 0.20  [25] 

𝜌 0.6  Assumed 

𝜙 0.3  Assumed 

𝜎 0.4  Assumed 

𝜏 0.6  Assumed 

𝜂 0.75  Assumed 

𝜀 0.80  Assumed 

𝜓 0.70  Assumed 

𝛽ℎ  0.000063  [28] 

 𝛽𝑎 ,𝛽𝑟  (0.000252,0.0027) [28] 

Λ𝑎  2  [28] 

𝜇𝑎  1.5  [28] 

𝜑 0.3  [29] 

𝛾𝑎  0.6  [28] 

𝛿𝑎  0.4  [28] 

 

Table 7: The impact of constant and logistic 

recruitment rates for models (1), (2), (3), (4), (5) 

and (9) 

S/No 
Constant recruitment  

rate (a) 

Logistic recruitment  

rate (b) 

Case I 2.8395 0.1420 

Case II 1.3826 1.3826 

Case III 0.00001624 0.00002081 

 

We observed from Table 7 that reproduction number 

from the model with constant recruitment rate is 

higher than the reproduction number from the model 

with logistic recruitment rate. Note that the models in 

(1) and (2) are formulated using mass action which is 

usually used for small population. For case II, the 

diphtheria modelsin (3) and (4) are formulated using 

standard incidence and it was observed that the 

reproduction number for both models with constant 

and logistic recruitment rates are the same. Finally, in 

case III, the models in (5) and (9) are zoonotic in 

nature and formulated using standard incidence 

functions. We observed here that the human 

reproduction number from the model with constant 

recruitment rate is higher than the human reproduction 

number from the model with logistic recruitment rate. 

 

Conclusion 

In this paper, the role of constant and logistic 

recruitment rates in three mathematical models of 

epidemiology is studied. In each of the models, a 

scenario where constant and logistic recruitment rates 

are incorporated in order to see their effect on the 

reproduction number. It was observed in case I that, 

the reproduction number of the model with logistic 

recruitment rate is less than the reproduction number 

from the model with constant recruitment rate. Further, 

in case II, the reproduction number from the model 

with both constant and logistic recruitment rates are 

the same. Finally, in case III, it was observed that the 

human reproduction number from the model with 

logistic recruitment rate is higher than the human 

reproduction number from the model with constant 

recruitment rate. 

So far, three mathematical models have been explored 

to incorporate constant and logistics recruitment rates 

into the susceptible class. The essence is to ascertain 

which recruitment rate will lower the value of the 

reproduction number better. From the results shown on 

Table 4, a reasonable conclusion cannot be drawn 

using the three epidemiological models in this paper. 

In view of this, further studies should focus on the 

inclusion of constant and logistics recruitment rates to 

more mathematical models so as to draw a better 

conclusion. 
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