On the QSPR Models of some Anti-malaria Drugs Using some Reversed Degree-based Topological Indices

Ibrahim, Hassan1*, Shewa, Gladys Amos2, Aderibigbe, Babatunde Adewale1
1Department of Mathematics, Federal University of Lafia, PMB 146, Lafia, Nigeria
2Department of Mathematics, Taraba State University, PMB 1167, Jalingo, Nigeria

Abstract
A topological index is a real number obtained from the chemical structure of a molecular graph that can be used to predict the physiochemical and biological properties of chemical compounds like drugs and benzene structures. This study aimed at proposing a quantitative structure-property relationship (QSPR) model for some physiological and biological properties of some anti-malaria drugs. Some reversed-degree-based topological indices of the molecular graphs of these drugs were computed; hence, a linear regression model analysis of these indices with the empirical values of the said properties of these drugs was carried out and presented. It was found that the topological indices computed for the said drugs have a good correlation with these physicochemical properties.

Keywords: Pharmaceutical chemistry, topological index, antimalarial drugs, QSPR analysis, linear regression model

Introduction
The World Health Organization (WHO) estimated in 2017 that there were 219 million cases of malaria worldwide, an increase of 2 million from the previous year, and as a result, there were 435 thousand deaths, or 1190 per day, mostly among children. Encouragingly, since 2020, these figures have decreased by about 37 worldwide, but a number of recent reports have shown that this level is slowly plateauing, emphasizing that there must not be complacency with the current treatment and prevention strategies [1]. Great progress has been made in recent years to reduce the high level of suffering caused by malaria worldwide. Notably, the use of insecticide-treated mosquito nets for malaria prevention and the use of artesinin-based combination therapy (ACT) for malaria have made a significant impact. Nevertheless, the development of resistance to the past and present anti-malaria drugs highlights the need for continued research to stay one step ahead. New drugs are needed, particularly those with new mechanisms of action. Many ranges of anti-malarial drugs are in existence, beginning with the discovery of quinine in the early 1800s through the modern-day ACT and the recently approved tafenoquine. We have drugs like meparcrin, choloquine, mefloquine, halofantrine, artesinin and its derivatives, amodiaquine, piperaquine, lumefantrine, Iroquanil and atovaquone, pyrimethamine and sulfadoxine, pyronaridine, and tafenoquine. Since the establishment of tafenoquine in 1999, the Medicines for Malaria Venture has been front-lining the discovery and development of new medicines for the treatment of malaria. The potential of these compounds to act as new anti-malaria drugs is judged by a number of requirements, one of which is the physiochemical properties of the drugs.
In discrete mathematics, graph theory in general is not only the study of different properties of objects but also tells us about objects having the same properties as investigating objects. These properties of different objects are of primary interest. In particular, graph polynomials related to graphs are rich in information. Mathematical tools like polynomials and topological-based numbers are of significant importance to collect information about the properties of chemical compounds. These tools allow us to discover a wealth of previously unknown information about compounds. Multifold graph polynomials are present in the literature. There are many topological indices that help us study the physical, chemical, and biological properties of compounds such as drugs. Wiener [2] introduced the concept of topological index while working on boiling points. In particular, the Hosoya polynomial [3] plays an important role in the area of distance-based topological indices. The role of topological indices in drug development research is an interesting area of graph theory. A series of definitions in the fields of topological indices and drug discovery technologies are available. In all cases, where it is possible, the IUPAC recommendations for terms used in medicinal chemistry and computational drug design are recommended. Recent advances on the use of topological indices in the lead discovery process are reviewed, with an emphasis on two approaches: the combined use of connectivity and charge indices and the TOSS-MODE approach.
Drug discovery and development is a slow, complicated, multi-objective, and expensive enterprise. Garcia [4] used topological indices to predict anti-Alzheimer and anti-parasitic GSK-3 inhibitors by multi-target QSAR in silicon screening. Topological descriptors for a large series of 3,370 active and non-active compounds were initially calculated with the Modes Lab software. Linear discriminant analysis was used to fit the classification function, and it predicts heterogeneous series of compounds like paullones, indirubins, and meridians. Topological indices of some molecular structures of anticancer drugs were considered by Gao et al. [5]. They concentrated on the family of smart polymers, which are widely used in the manufacturing of anticancer drugs. Zheng [6] worked on the hyaluronic acid-paclitaxel conjugates, which are widely used in the manufacture of anticancer drugs; on the topological indices of Fractal and Cayley tree-type dendrimers. Imran et al. studied the two chemical trees, namely, the fractal tree and the Cayley tree [7]. They further computed their topological indices based on the degree concept. Furthermore, Kang computed some newly developed topological indices of porphyrin, propyl ethyl imine, zinc-porphyrin, and poly(ethylene amide amine) dendrimers [8]. Ediz evaluated the ev-degree and ve-degree topological indices of some newly defined anticancer drug candidates, which are based on alkylating agents [9]. Some degree-based topological indices on asthma drugs with QSPR analysis during COVID-19 were investigated by Kn [10]. Topological indices were used to determine the physical and chemical characteristics of asthma drugs. Saleh et al. employed reduced neighborhood topological indices and polynomials for the treatment of COVID-19. They calculated the reduced neighborhood topological indices and RNM polynomials of some of the antiviral agents: remdesivir, chloroquine, hydroxychloroquine, theaflavin, and dexamethasone [11]. Wei et al. went further to compute some reverse topological indices, namely, the reverse general Randic index, the reverse atom bond connectivity index, the reverse geometric arithmetic index, the reverse forgotten index, the reverse Balaban index, and the reverse Zagreb type indices of the remdesivir compound used in the treatment of corona virus patients [12]. Mondal et al. applied some degree-based and neighborhood degree sum-based topological indices for the aforesaid antiviral drugs using a polynomial approach [13]. The results obtained can aid in the design of new medicines for the treatment of COVID-19. The Mdn-Polynomial, downhill Zagreb topological indices, and downhill Zagreb polynomials of some of the antiviral agents of remdesivir were also considered [14]. Furthermore, the well-known degree-based topological indices are applied to the chemical structures of medicines used for the treatment of breast cancer [15]. Chemical structure is considered a graph, where elements are taken as vertices and bounds between them are taken as edges. Further, QSPR analysis of said topological indices is discussed, and it was shown that these topological indices are highly correlated with the physical properties of chemical compounds used for the treatment of breast cancer. There are more than 148 topological indices in the literature, but little or none of them have been used to study the anti-malaria drug compounds. We seek to employ some of these indices to investigate the physicochemical and biological properties of some of the drugs used in treating malaria patients.

Materials and Methods

Some reversed degree-based topological indices

Let G be a simple connected graph, m and n denoted the number of edges and number of vertices in G, respectively, then we have the following definitions and equations [16].

The reversed first Zagreb index is defined as

$$R1(G) = \sum_{e \in E(G)} (d(e))^2$$

The reversed second Zagreb index is

$$R2(G) = \sum_{e \in E(G)} (d(e)^2)$$

The reversed first hyper Zagreb index is

$$RHM1(G) = \sum_{m,n \in E(G)} (R(m) + R(n))^2$$

The reversed second hyper Zagreb index is

$$RHM2(G) = \sum_{m,n \in E(G)} (R(m) + R(n))^2$$

The reversed redefined first Zagreb index is

$$RReM1(G) = \sum_{m,n \in E(G)} \frac{(R(m) + R(n))}{(R(m) + R(n))}$$

The reversed redefined second Zagreb index is

$$RReM2(G) = \sum_{m,n \in E(G)} \frac{(R(m) + R(n))}{(R(m) + R(n))}$$

The reversed redefined first Zagreb index is

$$RReM3(G) = \sum_{m,n \in E(G)} (R(m) + R(n))^2$$

The reversed forgotten index is

$$RF(G) = \sum_{e \in E(G)} (R(m))^2 + (R(n))^2$$

The reversed harmonic index is

$$RH(G) = \sum_{m,n \in E(G)} \frac{2}{(R(m) + R(n))}$$

The reversed geometric arithmetic index is

$$RGA(G) = \sum_{m,n \in E(G)} \sqrt{\frac{(R(m) + R(n))}{(R(m) + R(n))}}$$

Molecular structure of some anti-malaria drugs

We considered the following chemical structure of anti-malaria drugs (Figs. 1–10).
Figure 1: Structure of Chloroquine (C₁₈H₂₆ClN₃)

Figure 2: Structure of Hydroxychloroquine (C₁₃H₂₆ClN₃O)

Figure 3: Structure of Atovaquone (C₂₂H₁₈ClO₃)

Figure 4: Structure of Amodiaquine (C₂₀H₂₂ClN₃O)

Figure 5: Pyrimethamine (C₁₂H₁₃ClN₄)

Figure 6: Mefloquine (C₁₇H₁₆F₆N₂O)
The Linear regression model

The regression model

\[P = A + B(TI) \]

where \(P \) is the physical property of the drug, \(A \) is a constant and \(B \) is the regression coefficient and \(TI \) represent the Topological Indices of the molecular graph of these drugs.

Some physiochemical values of antimalarial drugs

The National Center for Biotechnology Information (PubChem) has the following physicochemical properties of these antimalarial drugs as presented in Table 1.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Drugs/Properties</th>
<th>XlogP</th>
<th>Molar Mass</th>
<th>Flash Point</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chloroquine</td>
<td>8.2</td>
<td>296.5</td>
<td>578</td>
<td>255</td>
</tr>
<tr>
<td>2</td>
<td>Hydroxylcholoquine</td>
<td>3.6</td>
<td>335.9</td>
<td>296.4</td>
<td>331</td>
</tr>
<tr>
<td>3</td>
<td>Amodiaquine</td>
<td>2.6</td>
<td>355.9</td>
<td>278.6</td>
<td>406</td>
</tr>
<tr>
<td>4</td>
<td>Piperaquine</td>
<td>5.6</td>
<td>535.52</td>
<td>389.9</td>
<td>655</td>
</tr>
<tr>
<td>5</td>
<td>Lumefrantine</td>
<td>8.7</td>
<td>528.9</td>
<td>373.8</td>
<td>671</td>
</tr>
<tr>
<td>6</td>
<td>Atovaquone</td>
<td>5.2</td>
<td>366.8</td>
<td>251.6</td>
<td>595</td>
</tr>
<tr>
<td>7</td>
<td>Pyrimethamin</td>
<td>2.7</td>
<td>248.71</td>
<td>206.7</td>
<td>242</td>
</tr>
<tr>
<td>8</td>
<td>Mefloquine</td>
<td>3.6</td>
<td>378.31</td>
<td>205.2</td>
<td>483</td>
</tr>
<tr>
<td>9</td>
<td>Quinine</td>
<td>2.9</td>
<td>324.4</td>
<td>281.4</td>
<td>457</td>
</tr>
<tr>
<td>10</td>
<td>Artemisinin</td>
<td>2.8</td>
<td>282.33</td>
<td>342.0</td>
<td>452</td>
</tr>
</tbody>
</table>

Results and Discussion

Molecular graph is a graph obtained from a chemical compound where its vertices represent the atoms and the bond connecting them represents the edges. The molecular graph of the compounds in Figs. 1 to 10 is represented below:
A graph G of chloroquine $\text{C}_{18}\text{H}_{26}\text{ClN}_3$ molecular structure
Figure 11: Molecular graph of chloroquine compound

A graph G of quinine $\text{C}_{20}\text{H}_{24}\text{N}_2\text{O}_2$ molecular structure
Figure 12: Molecular graph of Quinine

A graph G of pyrimethamine $\text{C}_{12}\text{H}_{13}\text{ClN}_4$ molecular structure
Figure 13: Molecular graph of Pyrimethamine Compound

A graph G of piperaquine $\text{C}_{29}\text{H}_{32}\text{Cl}_2\text{N}_6$ molecular structure
Figure 14: Molecular graph of Piperaquine Compound

A graph G of mefloquine $\text{C}_{17}\text{H}_{16}\text{F}_6\text{N}_2\text{O}$ molecular structure
Figure 15: Molecular graph of Mefloquine Compound

A graph G of lumefrantrine $\text{C}_{30}\text{H}_{32}\text{Cl}_3\text{NO}$ molecular structure
Figure 16: Molecular graph of Lumefrantrine Compound

A graph G of amodiaquine $\text{C}_{20}\text{H}_{22}\text{ClN}_3\text{O}$ molecular structure
Figure 17: Molecular graph of Amodiaquine Compound
Table 2: Numerical value of the topological indices of the molecular graphs

<table>
<thead>
<tr>
<th>S/N</th>
<th>Drugs</th>
<th>RFZI</th>
<th>RSZI</th>
<th>RFHZI</th>
<th>RSZHI</th>
<th>RRZI</th>
<th>RRSZI</th>
<th>RRTZI</th>
<th>RFI</th>
<th>RHI</th>
<th>RGAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chloroquine</td>
<td>206</td>
<td>231</td>
<td>971</td>
<td>1321</td>
<td>44.083</td>
<td>51.217</td>
<td>11.06</td>
<td>511</td>
<td>20.267</td>
<td>43.802</td>
</tr>
<tr>
<td>2</td>
<td>Hydroxylcholoquine</td>
<td>228</td>
<td>256</td>
<td>1068</td>
<td>1464</td>
<td>48.057</td>
<td>54.057</td>
<td>1299</td>
<td>556</td>
<td>22.600</td>
<td>48.787</td>
</tr>
<tr>
<td>3</td>
<td>Amodiaquine</td>
<td>256</td>
<td>298</td>
<td>1244</td>
<td>1818</td>
<td>61.067</td>
<td>50</td>
<td>1430</td>
<td>648</td>
<td>23.467</td>
<td>52.590</td>
</tr>
<tr>
<td>4</td>
<td>Piperaquine</td>
<td>404</td>
<td>480</td>
<td>1980</td>
<td>2967</td>
<td>74</td>
<td>97.8</td>
<td>2400</td>
<td>1020</td>
<td>35.6</td>
<td>82.575</td>
</tr>
<tr>
<td>5</td>
<td>Lumeofranate</td>
<td>358</td>
<td>421</td>
<td>1756</td>
<td>2661</td>
<td>69.722</td>
<td>85.767</td>
<td>2150</td>
<td>914</td>
<td>32.4</td>
<td>73.152</td>
</tr>
<tr>
<td>6</td>
<td>Atovaquone</td>
<td>316</td>
<td>388</td>
<td>1668</td>
<td>2852</td>
<td>56</td>
<td>73.124</td>
<td>2128</td>
<td>878</td>
<td>25.21</td>
<td>59.387</td>
</tr>
<tr>
<td>7</td>
<td>Pyrimethamine</td>
<td>172</td>
<td>200</td>
<td>844</td>
<td>1260</td>
<td>34</td>
<td>40.433</td>
<td>1014</td>
<td>444</td>
<td>15.533</td>
<td>34.718</td>
</tr>
<tr>
<td>8</td>
<td>Mefloquine</td>
<td>300</td>
<td>358</td>
<td>1600</td>
<td>2634</td>
<td>66.719</td>
<td>50.833</td>
<td>1984</td>
<td>884</td>
<td>23.114</td>
<td>54.399</td>
</tr>
<tr>
<td>9</td>
<td>Quinine</td>
<td>243</td>
<td>282</td>
<td>1223</td>
<td>1836</td>
<td>42</td>
<td>58.129</td>
<td>1513</td>
<td>652</td>
<td>21.438</td>
<td>48.850</td>
</tr>
<tr>
<td>10</td>
<td>Artemisinin</td>
<td>280</td>
<td>360</td>
<td>1644</td>
<td>3364</td>
<td>46.167</td>
<td>60.257</td>
<td>2252</td>
<td>909</td>
<td>18.710</td>
<td>15.854</td>
</tr>
</tbody>
</table>

The QSPR analysis

The linear relationship between the empirical values and the values of the Topological indices as in Table 1 and 2 is hereby presented by finding the correlation coefficients r with the indicators shown. Let X_{p3} denote Xiogp3, M_m denote Molar Mass, F_p denote Flash point and C_z denote Complexity properties. We obtain the following QSPR models based on the various topological indices:

- **QSPR for Reversed First Zagreb Index (RFZI)**
 - $X_{p3} = 1.860 + 0.021(RFZI)$
 - $M_m = 48.754 + 1.191(RFZI)$
 - $F_p = 78.743 + 0.678(RFZI)$
 - $C_z = 24.159 + 1.800(RFZI)$

- **QSPR for Reversed Second Zagreb Index (RSZI)**
 - $X_{p3} = 1.126 + 0.016(RSZI)$
 - $M_m = 70.522 + 0.943(RSZI)$
 - $F_p = 92.273 + 0.533(RSZI)$
 - $C_z = 2.365 + 1.433(RSZI)$

- **QSPR for Reversed First Hyper Zagreb Index (RFHZI)**
 - $X_{p3} = 0.979 + 0.138(RFHZI)$
 - $M_m = 75.003 + 0.219(RFHZI)$
 - $F_p = 101.324 + 0.119(RFHZI)$
 - $C_z = 11.968 + 0.328(RFHZI)$

- **QSPR for Reversed Second Hyper Zagreb Index (RSHZI)**
 - $X_{p3} = 1.275 + 0.112(RSHZI)$
 - $M_m = 130.959 + 0.116(RSHZI)$
 - $C_z = 157.604 + 0.140(RSHZI)$

- **QSPR for Reversed Redefined First Zagreb Index (RRFZI)**
 - $X_{p3} = 3.100 + 0.137(RRFZI)$
 - $M_m = 6.337 + 7.170(RRFZI)$
 - $F_p = 45.395 + 4.275(RRFZI)$
 - $C_z = 37.132 + 9.965(RRFZI)$

QSPR for reversed redefined second Zagreb index (RRSZI)

- $X_{p3} = 2.118 + 0.093(RRSZI)$
- $M_m = 44.302 + 5.094(RRSZI)$
- $F_p = 67.693 + 3.031(RRSZI)$
- $C_z = 12.118 + 7.482(RRSZI)$

QSPR for Reversed Redefined Third Zagreb Index (RRTZI)

- $X_{p3} = 0.025 + 0.002(RRTZI)$
- $M_m = 103.194 + 0.163(RRTZI)$
- $F_p = 116.782 + 0.088(RRTZI)$
- $C_z = 69.685 + 0.232(RRTZI)$

QSPR for Reversed Forgotten Index (RFI)

- $X_{p3} = 0.457 + 0.006(RFI)$
- $M_m = 75.240 + 0.414(RFI)$
- $F_p = 105.690 + 0.218(RFI)$
- $C_z = 18.712 + 0.607(RFI)$

QSPR for Reversed Harmonic Index (RHI)

- $X_{p3} = 2.497 + 0.272(RHI)$
- $M_m = 15.759 + 14.955(RHI)$
- $F_p = 44.195 + 9.204(RHI)$
- $C_z = 8.732 + 19.633(RHI)$

QSPR for Reversed Geometric Arithmetic Index (RGAI)

- $X_{p3} = 1.231 + 0.099(RGAI)$
- $M_m = 25.923 + 6.343(RGAI)$
- $F_p = 27.092 + 4.246(RGAI)$
- $C_z = 24.903 + 9.075(RGAI)$

We wrap up our work in this section with a few key points. In Table 1, various reverse topological indices of the molecular graphs were presented. Tables 3 to 12 showed the correlated values of the physicochemical properties of these anti-malaria drugs with those reverse topological indices. It can be seen that the regression model value r is more than 0.6, and p-value show less than 0.05. Hence, it can be concluded that all the physicochemical properties are highly significant.
In this paper, we investigate the reverse-based topological indices of some chemical structures of antimalaria drugs. We compute reversed first and reversed second Zagreb indices, reversed first hyper and reversed second hyper Zagreb indices, redefined first, second and third Zagreb indices, forgotten index, harmonic index, and geometric arithmetic index. Degree-based topological indices are mathematical tools used in graph theory to analyze the structural properties of graphs, including chemical structures of drugs. The results obtained in this paper portray the promising application prospects in chemical and pharmacy engineering.

Table 3: Regression analysis on reverse first Zagreb index

<table>
<thead>
<tr>
<th>Physical Properties</th>
<th>N</th>
<th>A</th>
<th>B</th>
<th>r</th>
<th>F</th>
<th>P</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xlog P3</td>
<td>10</td>
<td>-1.860</td>
<td>0.021</td>
<td>0.681</td>
<td>6.920</td>
<td>0.030</td>
<td>Sign’nt</td>
</tr>
<tr>
<td>Molar Mass</td>
<td>9</td>
<td>48.754</td>
<td>1.191</td>
<td>0.994</td>
<td>56.962</td>
<td>0.000</td>
<td>Sign’nt</td>
</tr>
<tr>
<td>Flash Point</td>
<td>8</td>
<td>78.743</td>
<td>0.678</td>
<td>0.794</td>
<td>10.255</td>
<td>0.019</td>
<td>Sign’nt</td>
</tr>
<tr>
<td>Complexity</td>
<td>10</td>
<td>-24.159</td>
<td>1.800</td>
<td>0.938</td>
<td>58.665</td>
<td>0.000</td>
<td>Sign’nt</td>
</tr>
</tbody>
</table>

Table 10: Regression analysis on reverse forgotten index

<table>
<thead>
<tr>
<th>Physical Properties</th>
<th>N</th>
<th>A</th>
<th>B</th>
<th>r</th>
<th>F</th>
<th>P</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xlog P3</td>
<td>10</td>
<td>-0.457</td>
<td>0.006</td>
<td>0.529</td>
<td>3.102</td>
<td>0.003</td>
<td>Sign’nt</td>
</tr>
<tr>
<td>Molar Mass</td>
<td>9</td>
<td>75.240</td>
<td>0.414</td>
<td>0.873</td>
<td>22.326</td>
<td>0.002</td>
<td>Sign’nt</td>
</tr>
<tr>
<td>Complexity</td>
<td>10</td>
<td>18.712</td>
<td>0.607</td>
<td>0.880</td>
<td>27.548</td>
<td>0.001</td>
<td>Sign’nt</td>
</tr>
</tbody>
</table>

Table 11: Regression analysis on reverse harmonic index

<table>
<thead>
<tr>
<th>Physical Properties</th>
<th>N</th>
<th>A</th>
<th>B</th>
<th>r</th>
<th>F</th>
<th>P</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xlog P3</td>
<td>10</td>
<td>-2.497</td>
<td>0.272</td>
<td>0.762</td>
<td>11.045</td>
<td>0.010</td>
<td>Sign’nt</td>
</tr>
<tr>
<td>Molar Mass</td>
<td>9</td>
<td>15.759</td>
<td>14.955</td>
<td>0.984</td>
<td>213.878</td>
<td>0.000</td>
<td>Sign’nt</td>
</tr>
<tr>
<td>Complexity</td>
<td>10</td>
<td>24.419</td>
<td>9.204</td>
<td>0.899</td>
<td>25.178</td>
<td>0.002</td>
<td>Sign’nt</td>
</tr>
</tbody>
</table>

Table 12: Regression analysis on reverse geometric arithmetic index

<table>
<thead>
<tr>
<th>Physical Properties</th>
<th>N</th>
<th>A</th>
<th>B</th>
<th>r</th>
<th>F</th>
<th>P</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xlog P3</td>
<td>9</td>
<td>-1.231</td>
<td>0.099</td>
<td>0.720</td>
<td>7.521</td>
<td>0.029</td>
<td>Sign’nt</td>
</tr>
<tr>
<td>Molar Mass</td>
<td>8</td>
<td>25.923</td>
<td>6.343</td>
<td>0.975</td>
<td>117.005</td>
<td>0.000</td>
<td>Sign’nt</td>
</tr>
<tr>
<td>Complexity</td>
<td>9</td>
<td>-24.903</td>
<td>9.075</td>
<td>0.921</td>
<td>39.009</td>
<td>0.000</td>
<td>Sign’nt</td>
</tr>
</tbody>
</table>

Table 13: Correlation coefficients of the QSPR models

<table>
<thead>
<tr>
<th>TI</th>
<th>XlogP3</th>
<th>E</th>
<th>MM</th>
<th>FP</th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Zagreb</td>
<td>0.68</td>
<td>0.294</td>
<td>0.834</td>
<td>0.79</td>
<td>0.058</td>
<td>0.938</td>
</tr>
<tr>
<td>Second Zagreb Index</td>
<td>0.641</td>
<td>0.406</td>
<td>0.924</td>
<td>0.771</td>
<td>0.050</td>
<td>0.930</td>
</tr>
<tr>
<td>First Hyper Zagreb</td>
<td>0.588</td>
<td>0.850</td>
<td>0.896</td>
<td>0.716</td>
<td>0.046</td>
<td>0.906</td>
</tr>
<tr>
<td>Second Hyper Zagreb</td>
<td>0.394</td>
<td>0.739</td>
<td>0.805</td>
<td>0.606</td>
<td>0.036</td>
<td>0.757</td>
</tr>
<tr>
<td>Redefined First Zagreb</td>
<td>0.68</td>
<td>0.294</td>
<td>0.994</td>
<td>0.79</td>
<td>0.058</td>
<td>0.938</td>
</tr>
<tr>
<td>Redefined Second Zagreb Index</td>
<td>0.641</td>
<td>0.406</td>
<td>0.924</td>
<td>0.771</td>
<td>0.050</td>
<td>0.930</td>
</tr>
<tr>
<td>Redefined Third Zagreb</td>
<td>0.527</td>
<td>0.608</td>
<td>0.862</td>
<td>0.680</td>
<td>0.048</td>
<td>0.864</td>
</tr>
<tr>
<td>Forgotten Index</td>
<td>0.529</td>
<td>0.571</td>
<td>0.873</td>
<td>0.677</td>
<td>0.016</td>
<td>0.880</td>
</tr>
<tr>
<td>Harmonic Index</td>
<td>0.762</td>
<td>0.108</td>
<td>0.984</td>
<td>0.899</td>
<td>0.113</td>
<td>0.881</td>
</tr>
<tr>
<td>Geometric Arithmetic Index</td>
<td>0.720</td>
<td>0.042</td>
<td>0.975</td>
<td>0.935</td>
<td>0.030</td>
<td>0.921</td>
</tr>
</tbody>
</table>

Table 13 presents the correlation coefficients for the indices with the properties, which shows that there is a strong perfect linear relationship between them as values are between -1 and +1. The relationship between the topological indices and the molar mass and complexity properties are more stronger than the rest of the properties, as most of their values are closed to +1. The QSPR Models can be used to predict and design future drugs of this nature.
The study implies that these anti-malaria drugs may be considered for further study by pharmacists and chemists in designing the drugs using these topological indices values. Maybe, the composition of these drugs, like the combinations may be tried for different ailments based on the range of the topological indices that were determined in this study. As the correlation coefficient has been found for the topological indices, the positively high correlated drugs may be considered for the combination of design of novel drugs. As the range of topological indices are not published by chemists anywhere in web/internet, the mathematicians may not be able to decide upon the values they obtain for different chemical compounds whether the compounds the researchers chose have future study or not. A multidisciplinary project may be taken up by various disciplines researchers for a better result.

Conflict of interest: The authors declare that no competing interest to disclose.

References

Citing this Article