Single Oscillator Analysis, Electronic Polarizability and Optoelectronic Properties of Spin Coated Cobalt Doped Zinc Oxide Thin Films
DOI:
https://doi.org/10.62050/fscp2024.504Keywords:
dispersive- energy, electronic polarizability, oscillator- energy, optoelectronicAbstract
The structural, optical, single oscillator analysis, electronic polarizability, and optoelectronic properties of Co:ZnO thin films prepared via sol-gel spin coating are reported. X-ray diffraction analysis revealed a hexagonal wurtzite crystal structure, with crystallite size increasing from15.9 (0 mol%) to 16.37 nm at 4 mol.% then decreased to 14.86 nm at 8 mol%, attributed to lattice distortion and micro-strain. Strain energy density increased with Co doping, reflecting enhanced lattice distortions. UV-vis spectroscopy reveals a decrease in the optical band gap from 3.72 eV for 0 mol% to 2.76 eV for 8 mol%, while the refractive index increased from 2.23 to 2.47 . The oscillator energy in the single oscillator analysis through the Wemple-DiDomenico model increases from 4.091 eV (0 mol%) to 6.909 eV (8 mol%), the dispersive energy rises from 1.156 to 38.154 eV, and the oscillator strength increases from 0.36 × 10⁻⁵ to 29.8 × 10⁻⁵. Electronic polarizability also increased from 2.26 × 10⁻²⁵ to 2.45 × 10⁻²⁵ cm³, thus reflecting increased polarization arising from structural and electronic changes. Optoelectronic properties like the charge carrier, concentration plasma frequency, relaxation time and optical mobility were also maximized at 6 mol% cobalt doping and decreased at 8 mol%. On the other hand, the optical resistivity decreased from 9.49 × 10⁻²¹ to 2.29 × 10⁻²² Ωm. These findings therefore reveal that Co doping enhances the optical and electronic properties of ZnO thin films, hence making them suitable for optoelectronic applications, including sensors, solar cells, and nonlinear optical devices.
References
Yakuphanoglu F 2011 Controlling of electrical and interface state density properties of ZnO:Co/p-silicon diode structures by compositional fraction of cobalt dopant Microelectron. Reliab. 51 2195–9
Jiang, J., Pi, Q., & Xia, Y. (2021). ZnO-based nanostructures for biomedical applications. Materials Today Advances, 10, 100126.
Sharma, R., Singh, P., & Sharma, A. (2022). ZnO-based gas sensors: A comprehensive review. Journal of Sensors and Sensor Systems, 11(2), 159-179.
Cao, J., Zhang, Y., Wang, D., & Liu, X. (2022). Advances in ZnO-based light-emitting diodes: From material development to device engineering. Advanced Optical Materials, 10(5), 2102071.
Foster, H. A., Ditta, I. B., Varghese, S., & Steele, A. (2021). Photocatalytic degradation of organic pollutants using ZnO nanostructures: A review. Environmental Science: Nano, 8(3), 709-737.
Park, J. H., Lee, M., & Kim, S. (2023). Flexible and wearable piezoelectric devices based on ZnO nanowires. Nano Energy, 97, 107153.
Fortunato, E., Barquinha, P., & Martins, R. (2020). Oxide semiconductor thin-film transistors: A review of recent advances. Advanced Materials, 32(15), 1904424.
Sharma, P., Gupta, S. K., & Singh, R. K. (2013). Optical and structural properties of Co-doped ZnO thin films. Materials Chemistry and Physics, 141(2-3), 367-372.
Vishnu, C. V., Kumar, V. R., & Narayana, C. (2022). Tailoring the photoluminescence and magnetic properties of ZnO thin films by Mn doping. Materials Today Communications, 30, 103197.
Goh, G. K. L., Zhang, X., & Liu, C. (2021). Structural and magnetic properties of Fe-doped ZnO thin films. Journal of Alloys and Compounds, 866, 158911.
Bhowmik, A., Chattopadhyay, P. P., & Mandal, K. (2021). Influence of Ni doping on the structural, optical and electrical properties of ZnO thin films. Journal of Materials Science: Materials in Electronics, 32(5), 6734-6745.
Xiao, Y., et al. (2021). Structural, optical, and magnetic properties of Co thin films prepared by sol-gel spin coating. Journal of Materials Science, 56(15), 8756-8765.
Zhang, L., et al. (2020). Influence of annealing temperature on the properties of Co thin films. Thin Solid Films, 697, 137836.
Kim, J., et al. (2022). Structural and magnetic properties of Co thin films produced by pulsed laser deposition. Journal of Applied Physics, 131(3), 033906.
Lee, S., et al. (2021). Effects of laser influence on the properties of Co thin films deposited by pulsed laser deposition. Applied Surface Science, 547, 149064.
Wang, H., et al. (2023). Deposition of Co thin films by RF magnetron sputtering: Optimization of sputtering power and gas ratios. Surface and Coatings Technology, 433, 127142.
Liu, Y., et al. (2021). Magnetic and optical properties of Co thin films deposited by sputtering. Journal of Magnetism and Magnetic Materials, 529, 167939.
Chen, X., et al. (2022). Synthesis of Co thin films using metal-organic chemical vapor deposition. Journal of Crystal Growth, 584, 126612.
Park, J., et al. (2022). Atomic layer deposition of Co thin films for advanced electronic applications. ACS Applied Materials & Interfaces, 14(3), 3625-3633.
Akazawa, M. (2020). Optical properties and single oscillator analysis of doped ZnO thin films. Journal of Applied Physics, 128(4), 045302.
Lee, J., Kim, H., & Lee, S. (2022). Single oscillator analysis of ZnO thin films: Effects of annealing temperature. Materials Research Bulletin, 150, 111772.
Sahin, Y., Aksu, A., & Demir, U. (2021). Influence of Co doping on the optical properties of ZnO thin films: A single oscillator analysis. Journal of Materials Science: Materials in Electronics, 32(10), 13579-13588.
Chen, Y., & Zhang, X. (2023). Electronic Polarizability and Dielectric Properties of High-k Materials: A Comprehensive Review. Journal of Materials Science, 58(7), 3456-3472.
Li, H., & Wang, J. (2024). Tunable Refractive Index in Photonic Materials Through Controlled Electronic Polarizability. Applied Physics Letters, 122(4), 041102.
Kim, D., & Lee, K. (2024). Polaronic Contributions to Electronic Polarizability in Transition Metal Oxides. Physical Review B, 100(2), 025202.
Poongodi, G.; Anandan, P.; Kumar, R. Mohan; Jayavel, R . (2015). Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol–gel spin coating method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 148(), 237–243. doi:10.1016/j.saa.2015.03.134
Deepa Rani T, Sakshi Joshi A, Leela S (2021).Studies on structural and optical properties of Cobalt doped ZnO thin films prepared by Sol-gel spin coating technique. Materials Today: Proceedings 43 (2021) 3166–3168, Materials Today: Proceedings 43 (2021) 3166–3168
Ochang, M.B., Ahemen, I., A.N. Amah, A.D. Onoja, Y.Yusof (2023).Effect of Substrate Temperature on the Structural Optical and Electrical Properties of New Cu2Cd0.8Mn0.2SnS4 Photo-absorber Layer for Solar Cells, Results in Optics, doi: https://doi.org/10.1016/j.rio.2023.100509
Xu L, Xinghua Z, Kangxin, J , Dingyu ,Y (2020).Study on structural and optical properties of Mn-doped ZnO thin films by sol-gel method . Optical Materials 100 (2020) 109657, https://doi.org/10.1016/j.optmat.2020.109657
Dhruvashi, ; Shishodia, P.K. (2016). Effect of Cobalt doping on ZnO thin films deposited by sol-gel method. Thin Solid Films, (), S0040609016301791–. doi:10.1016/j.tsf.2016.05.028
Lalit K. G;Preeti G., Gairola, S.P, Mohan C. M, Promod K,Sachin K, Dushyant K, Vivek A, Aragon F, Soler A.G and Swart H C.. (2021). Cobalt doping induced shape transformation and its effect on luminescence in zinc oxide rod-like nanostructures. Journal of Alloys and Compounds, doi:10.1016/j.jallcom.2021.159189
Mohaseb, M.A.(2023). Effect of Co doping onto physical properties of ZnO films and its UV detection performance. J Mater Sci: Mater Electron 34, 1219 (2023). https://doi.org/10.1007/s10854-023-10633-1
Zong, Y. Sun, S. Meng, Y. Wang, H. Xing, X. Li, X. Zheng(2019). Doping effect and oxygen defects boost room temperature ferromagnetism of Co-doped ZnO nanoparticles: experimental and theoretical studies, RSC Adv. 9 (2019) 23012–23020, https://doi.org/10.1039/c9ra03620b
Amakali, Theopolina, Likius. S. Daniel, Veikko Uahengo, Nelson Y. Dzade, and Nora H. de Leeuw. 2020. "Structural and Optical Properties of ZnO Thin Films Prepared by Molecular Precursor and Sol–Gel Methods" Crystals 10, no. 2: 132. https://doi.org/10.3390/cryst10020132
Marinov, Georgi, Biliana Georgieva, Marina Vasileva, and Tsvetanka Babeva. 2023. "Study of Structure, Morphology and Optical Properties of Cobalt-Doped and Co/Al-co-Doped ZnO Thin Films Deposited by Electrospray Method" Applied Sciences 13, no. 17: 9611. https://doi.org/10.3390/app13179611
Alsaad, Ahmad M.; Ahmad, Ahmad A.; Al-Bataineh, Qais M.; Bani-Salameh, Areen A.; Abdullah, Hadeel S.; Qattan, Issam A.; Albataineh, Zaid M.; Telfah, Ahmad D. . (2020). Optical, Structural, and Crystal Defects Characterizations of Dip Synthesized (Fe-Ni) Co-Doped ZnO Thin Films. Materials, 13(7), 1737–. doi:10.3390/ma13071737.
Gupta, S., & Kumar, D. (2019). Optical properties of cobalt-doped ZnO thin films: A review. Materials Research Bulletin, 115, 102-110.
Singh, R., et al. (2020). Structural and optical modifications in ZnO thin films due to cobalt doping. Applied Surface Science, 500, 144007.
Sharma, P., et al. (2018). Bandgap Engineering in Co-doped ZnO thin films: Effects of concentration and annealing. Optical Materials, 75, 234-241.
Pathak, T., et al. (2021). Influence of transition metal doping on ZnO thin films' optical properties. Journal of Materials Science, 56(3), 1825-1837.
Singh, P., Mehta, B. R., & Chauhan, S. (2021). Influence of cobalt doping on dielectric properties of ZnO thin films. Journal of Applied Physics, 129(5), 055303.
Dar, M. A., Gul, R., Khan, M., Majid, K., & Qurashi, A. (2019). Optical and dielectric properties of transition metal-doped ZnO thin films. Materials Research Bulletin, 118, 110484.
Dutta, A., Das, R., Paul, D., & Kar, S. (2018). Role of defect states in tuning the optical and dielectric properties of Co-doped ZnO thin films. Materials Chemistry and Physics, 206, 241-250.
Sharma, N., et al. (2022). Analysis of polarizability and bandgap tailoring in ZnO films with Co doping. Optical Materials, 127, 112245.
Raj, A., et al. (2021). Doping effects on optical properties of ZnO thin films: A comprehensive study. Applied Surface Science, 556, 145789.
Okorie O., A. Buba .and Ramalan A. M. (2017). Optical and Dielectric Properties of Cadmium Sulphide Thin Film Grown Using Chemical Bath Deposition Technique (IOSR Journal of Applied Physics (IOSR-JAP)e-ISSN: 2278-4861.9, Issue 5 Ver. I (Sep. - Oct. 2017), PP 82-89www.iosrjournals.org
Desai HN, Dhimmar JM, Modi BP. (2015).Study of linear and non-linear optical parameters of zinc selenide thin film int. J Eng Res Appl ISSN: 2248-9622.;5(6): 117-22.
Okorie O, and Buba , A.(2023). Asian J. Res. Rev. Phys., vol. 7, no. 2, pp. 1-14, Article no.AJR2P.98416)
Ali, S., et al. (2020). Influence of dopants on the dielectric and optical properties of ZnO thin films. Journal of Materials Science Research, 10(3), 45-54.
Timoumi, A., Bouzouita, H. and Rezig, B. (2013):Characterization and Wemple-Didomenico Model of Indium Sulphide Thin Layers for Photovoltaic Applications; Australian Journal of Basic and Applied Sciences, 7(2): 448-456,
Kumar, R., et al. (2019). Optical and dielectric behavior of Co-doped ZnO thin films. Materials Today: Proceedings, 25, 156-163.
Dalouji, V (2018): Influence of surface topography and annealing temperature on the surface and volume of dissipation electrical energy and Spitzer–Fan model in Al doped ZnO films; Optical and Quantum Electronics 50:325

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Proceedings of the Faculty of Science Conferences

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.