Nutritional and Antinutritional Composition of Defatted Flours, Protein Concentrates and Protein Isolates of Honey Bean (Vigna unguilculata L Kalp) and Pinto Black (Phaseolus vulgaris)
DOI:
https://doi.org/10.62050/fscp2024.449Keywords:
Nutritional, Antinutritional, Defatted, Concentrates, IsolatesAbstract
Nutritional and antinutritional composition of honey bean (Vigna unguiculata L. Kalp) and pinto black bean (Phaseolus vulgaris), along with their defatted flour (DF), protein concentrate (PC), and protein isolate (PI), were studied. Protein concentrates and isolates were prepared from defatted seeds using the isoelectric precipitation method, followed by proximate and antinutritional analyses. The results showed carbohydrate compositions of 56.24% & 61.45% in DF, 16.26% & 19.43% in PC, and 3.36% & 1.35% in PI for honey bean (HB) and pinto black bean (PB), respectively. The protein values of the samples differed significantly (p < 0.05), showing a progressive increase from DF (33.35% & 27.92%) to PC (75.16% & 72.28%) and PI (88.17% & 92.02%), respectively. The percentage of ash, fiber, fat, and moisture in the defatted flours was 4.11% & 4.11%, 2.52% & 2.22%, 1.55% & 2.01%, and 2.23% & 2.97% for honey bean and pinto black bean, respectively. Only trace amounts of fat were detected in PC and PI. The antinutritional factors studied included phytate (3.42% & 3.40%), saponins (0.70% & 0.82%), tannins (0.20 mg/100 g & 12.62 mg/100 g), alkaloids (8.33% & 8.05%), oxalates (1.27% & 0.23%), flavonoids (3.73% & 2.08%), cyanide (0.52 mg/100 g & 0.24 mg/100 g), and total phenols (0.87% & 0.58%) in DF. The levels of these antinutritional factors in PC and PI were significantly lower and posed no nutritional concerns. The amino acid profile indicated that both samples contained substantial amounts of essential amino acids. The most abundant essential amino acid was leucine, with values of 4.55 & 4.81 g/100 g crude protein in DF, 5.90 & 5.17 g/100 g crude protein in PC, and 10.53 & 9.19 g/100 g crude protein in PI. Glutamic acid was the most abundant amino acid across all samples, with the highest concentration observed in PI (17.76 & 19.00 g/100 g crude protein). The amino acid analysis demonstrated that the PI samples were superior compared to the FAO/WHO provisional reference pattern. However, supplementation may be necessary for DF samples. The results also suggest that the isolates can be used to supplement cereal-based diet.
References
Vasconcelos, I.M., Maia, F.M.M., Farias, D.F, Campello, C.C., Carvalho, A.F.U., Moreira, R.A. and de Oliveira, R.T.A. (2010). Protein fractions, amino acid composition and antinutritional constituents of high-yielding cowpea cultivars. Journal of Food Composition and Analysis, 2: 54–60; https://doi.org/:10.1016/j.jfca.2009.05.008.
Saikia, P., Sarkar, C.R. and Borua, I. (1999). Chemical composition, antinutritional factors and effect of cooking on nutritional quality of rice bean [Vigna umbellate (Thunb; OHwi and Ohashi)]. Food Chemistry 67, 347–352.
Mensa-Wilmot, Y., Phillips, R.D. and Hargrove, J.L. (2001). Protein quality evaluation of cowpea-based extrusion cooked cereal/legume weaning mixtures. Nutrition Research 21, 849–857.
Maia, F.M.M., Oliveira, J.T.A., Matos, M.R.T., Moreira, R.A. and Vasconcelos, I.M., (2000). Proximate composition, amino acid content and haemagglutinating and trypsin-inhibiting activities of some Brazilian Vigna unguiculata (L.) Walp cultivars. Journal of the Science of Food and Agriculture 80,453–458.
Chinma, C.E. (2008). “Physico-chemical and functional properties of some Nigeria cowpea varieties”. Pakistan Journal of Nutrition 7.1: 186-190.
Butt, M.S and Batool, R. (2011) “Nutritional and functional properties of some promising legumes protein isolates”. Pakistan Journal Nutrition 9.4; 373-37
Umar, G and Sawinder, K. (2014) “Protein isolates: production, functional properties and application”. International Journal of Technology and Nutrition 6.3:35-44.
Vioque, J. (2001). Obtención y aplicaciones de concentrados aislados proteicos. Grasas aceites, 52(2):127-131.
Rodrigues, I.M., Coelho, J.F. and Carvalho, M.G.V. (2012). Isolation and valorisation of vegetable proteins from oilseed plants: Methods, limitations and potential. Journal of Food Engineering. 109(3):337-346.
Vioque, J., Pedroche, J., Yust, M., Lqari, M., Megías, C., Girón-Calle, J., Alaiz, M. and Millán, F. (2006). Bioactive peptides in storage plant proteins. Brazilian Journal of Food Technology. 99-102.
Moure, A., Sineiro, J., Dominguez, H. and Parajo, J.C. (2006). Functionality of oilseed protein products. Food Research International, 39(9), 945-963. https://doi.org/10.1016/j.foodres.2006.07.002.
Audu, S.S. & Aremu, M.O. (2011). Nutritional composition of raw and processed pinto bean (Phaseolus vulgaris L.) grown in Nigeria. Journal of Food Agriculture and Environment. .9(3&4):72-80.
Gbadamosi, S.O., Abiose, S.H. and Aluko, R.E. (2011). Amino acid profile, protein digestibility, thermal and functional properties of Conophor nut (Tetracarpidium conophorum) defatted flour, protein concentrate and isolates. International Journal of Food Science and Technology, 47, 731–739.
AOAC. (2005). Official methods of analysis (18th Ed). Association of official analytical chemists Washigton D.C. USA 533pp.
AOAC (Association of Official Analytical Chemists), (2006). Official Method of Analysis of the AOAC (W.Horwitz Editor) Eighteenth Edition. Washighton D.C, AOAC.
Paul, A.A., Southgate D.A.T. and Russel, J. (1980). First supplement to McCance and winddowson’s. The composition of food MMSC. London and Elsevier, New York.
Aremu, M.O., Ogunlade, I. and Olonisakin, A. (2007a). Fatty acid and amino acid composition of protein concentrate from cashew nut (Anarcadium occidentale) grown in Nasarawa State, Nigeria. Pakistan Journal of Nutrition. 6(5):419-423.
FAO/WHO/UNU (1985). Energy Requirements. Technical Report and Series Protein No. 724, Geneva. Ghafoornissa.
Aremu, M.O., Passali, D.B., Ibrahim, H. and Akinyeye R.O. (2018). Chemical composition of wonderful kola (Bucchlozia coriacea) and breadfruit (Artocarpus altilis) seeds grown in south-south, Nigeria: Bangladesh J. Sci. Ind. Res. 53(2):125-132.
Onwukeme, V.I., Nwankwo, P.M. and Obiuchendu, E.C. (2010). Proximate Analysis and Antinutritive content of Vigna Unguculate, Anachem Journal, 4(2): 761-764.
Aremu, M.O., Olaofe, O. and Akintayo, T.E. (2006a). A Comparative study on the chemical and amino acid composition of some Nigerian under-utilized legume flours. Pakistan Journal of Nutrition 5 (1):34-38.
Aremu, M.O., Olaofe, O. and Akintayo, E.T. (2006b). Compositional evaluation of cowpea (Vigna unguiculata) and scarlet runner bean (Phaseolus coccineus) varieties grown in Nigeria. Journal of Food, Agriculture & Environment.4 (2):39-43.
Sai-Ut, S., Ketnawa, S., Chaiwut, P. and Rawdkuen, S. (2009). Biochemical and functional properties of proteins from red kidney, navy and adzuki beans. Asian Journal of Food and Agro-Industry. 1906-3040: 2(04), pp 493-504. www.ajofai.info.
Mune, M.A.M., Minkaa, S.R and Mbome, I.L. (2013). Chemical composition and nutritional evaluation of a cowpea protein concentrate. Global Advanced Research Journal of Food Science and Technology (ISSN: 2315-5098) Vol. 2(3) pp. 035- http://garj.org/garjfst/index.htm.
Chandra, S., Singh, S. and Kumari, D. (2015). Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits, J. Food Sci. Technol. 52(6):3681–3688. https://doi.org/10.1007/s13197-014-1427-2.
Adeyeye, E.I. (2013). Proximate, mineral and antinutrient composition of dika nut (Irvingia gabonensis) kernel. Elixir. Food Sci. 58:14902–14906.
Ojukwu, M, Olawuni, I. and Iwouno, J.O. (2012). The Proximate Composition and Functional Properties of Full-Fat Flour, and Protein Isolate of Lima Bean (Phaseolus lunatus). Open Access Sci. Rep. 1:1–5
Oyewole, A. C. (2007). Effect of cooking and soaking on physical characteristics, nutrient composition and sensory evaluation of indigenous and foreign rice varieties in Nigeria. Nig. Afr. J. Biotech., 6(8), 1016-1020. https://www.ajol.info/index.php/ajb/article/view/57040
Aremu, M. O., Edem, R. L., Aremu, S. O., Ortutu, S. C., Ayakeme, E. B., Enyioha, J. M., Muhammad, H. I. and Obasi, B. C. (2024). Comparative studies on nutritive and antinutritive values of cowpea (Vigna unguiculata L. Walp) and rice (Oryza sativa L.). Lafia Journal of Scientific and Industrial Research, 2(2), 44 – 45. https://doi.org/10.62050/ljsir2024.v2n2.322
Samaila, J., Anuonye, J.C., Mudi, H., Ede, E.B., Suleiman, J.A., Yusuf, J. and Yohanna, A. (2016). Chemical Composition and Functional Properties of Protein Concentrate from Selected Cowpea Seeds in Nigeria. 857-868
da Silva, C.P. da Mota Araújo M.A. and Arêas, J.A.G. (2018). Identification and quantification of phenolic compounds and antioxidant activity in cowpeas of BRS xiquexique cultivar. Rev. Caatinga, 31: 209-216
Gan, R.Y., M.F. Wang, W.Y. Lui, K. Wu, S.H. Dai, Z.Q. Sui and H. Corke, (2017). Diversity in antioxidant capacity, phenolic contents, and flavonoid contents of 42 edible beans from China. Cereal Chem., 94: 291-297.
Paixao, N., Perestrelo, R., Marques, J.C and Camara, J.S. (2007). Relationship between antioxidant capacity and total phenolic content of red, rose and white wines. Food Chem., 105: 204-214. 42. Moreira-Araújo, R.S.D.R., G.R. Sampaio, R.A.M. Soares,
Badifu, G.I.O. (2001). Effect of processing on proximate composition, antinutritional and toxic contents of kernels from Cucurbitaceae species grown in Nigeria. J. Food Compos. Anal., 14: 153-161.
Adebowale, Y.A., Adeyemi A. and Oshodi, A.A. (2005). Variability in the physicochemical, nutritional and antinutritional attributes of six Mucuna species. Food Chem., 89: 37-48.
Aremu, M. O., Andrew, C., Oko, O. J., Odoh, R., Zando, C., Usman A. and Akpomie, T. (2022). Comparative studies on the physicochemical characteristics and lipid contents of desert date (Balanites aegyptiaca (L.) Del) kernel and pulp oils. European Journal of Nutrition & Food Safety, 14(1), 20–30. https://doi.org/10.9734/ejnfs/2022/v14i130473
Mayel, M.H., M. Ebenezer, P.O. Emmanuel, H.G. Bulama, K.A. Arowora and M. Timothy, (2022). Effect of processing on selected varieties of cowpea (Vigna unguiculata L. Walp). J. Appl. Sci., 22: 362-369, https://doi.org/10.3923/jas.2022.362.369
Aremu, MO, Abeekaa LP, Zando C, Obasi BC, Aremu DO, Passali DB & Omotehinwa FH (2023). Proximate, phytochemical and amino acid compositions of sodom apple (Calotropis procera) leaves and fruits. Lafia Journal of Scientific and Industrial Research, 1(1&2), 28 – 37. https://doi.org/10.62050/ljsir2023.v1n2.271.
Ayodele, F.I. and Aladesanmi, A.O. (2015). Nutritional and Antinutritional Composition of Adenopus breviflorus Benth Seed Protein Isolate. IOSR Journal of Applied Chemistry (IOSR-JAC) 8(9): 39-45. http://dx.doi.org/10.9790/5736-08913945
Olaofe, O. and Akintayo, E.T. (2000) Production of Isoeletric Points of Legume and Oil Seed Proteins from Amino Acid Composition. Journal Technology Science, 4, 49-53.
Fernandez-Quintela, A., Maccrulla, M.T., Del-Barrio, A.S. and Martinez, J.A. (1997) Composition and Functional Properties of Protein Isolates Obtained from Commercial Legumes Grown in Northern Spain. Journal Plant Foods for Human Nutrition, 51, 331-342. http://dx.doi.org/10.1023/A:1007936930354
Elhardallou, S.B., Khalid, I.I., Gobouri, A.A. and Asbdel-Hafez, A.S. (2015). Amino acid composition of cowpea (Vigna ungiculata L. Walp) flour and its protein isolates. Food and Nutrition Sciences. 6:790-797.
Aremu, M.O., Audu, S.S. and Gav, B.L. (2017). Comparative review of crude protein and amino acid composition of some leguminous seeds grown in Nigeria. 6(8). https://doi.org/10.18483/ijSci.1390
Frota, K.M.G., Lopes, L.A.R., Silva, I.C.V. and Arêas, J.A.G. (2017). Nutritional quality of the protein of Vigna unguiculata L. Walp and its protein isolate. 48(5):792-798.
Rangel, A. (2004). Biological evaluations of a protein isolate from cowpea (Vigna unguiculata) seeds. Food Chemistry, v. 87, n. 4, p. 491-499.
Aremu, M. O., Aboshi, D. S., David, A., Agere, I. J. H., Audu, S. S. and Musa, B. Z. (2019). Compositional evaluation of bitter melon (Mormordica charantia) fruit and fruit pulp of ebony tree (Diospyros mespiliformis). International Journal of Sciences, 8(1), 80–89. https://doi.org/:10.18483/ijSci.1889.
Oshodi, A. A., Olaofe, O. and Hall, G. M. (1993). Amino acid, fatty acid and mineral composition of pigeon pea (Cajanus cajan). International Journal of Food Sciences and Nutrition, 43(4), 187-191. https://doi.org/10.3109/09637489309027541
Chavan U D. (2001): “Functional Properties of Protein Isolates from Beach pea (Lathyrus maritimus L.)”. Food Chemistry. 74.2,1 77-187.

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Proceedings of the Faculty of Science Conferences

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.