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bstract: Cognitive Radio Networks (CRNs) require dynamic spectrum access as a way to maximize the use 

of inadequate spectrum resources with minimal interference from licensed primary users. MAC protocols of 

a traditional nature frequently fail to respond effectively in real-time to changing channel availability, 

resulting in poor spectrum utilization and high rates of collisions. This work presents a new Deep Q-Network 

(DQN)-based MAC protocol that learns and adapts to the shifting spectrum environment, allowing secondary users 

to make insightful, instantaneous channel access choices. The development and assessment of the protocol occurred 

across different environments–urban, rural, and indoor–representing unique ranges of spectrum availability and 

interference issues. The simulations ran on MATLAB, utilizing actual user mobility, Rayleigh fading, interference, 

and noise conditions in the real world. Results show that the DQN-based MAC protocol markedly outperforms 

traditional random channel selection across major performance assessments, realizing up to 71% higher throughput, 

58% less collisions, and improved equity within user interactions. The results show improvement in the spectrum 

efficiency and user performance in real time. 
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ntroduction 

The proliferation  of wireless communication has led to an unprecedented need for radio spectrum, a scarce 

resource that is traditionally managed through fixed allocation policies [1, 2]. However, such policies have 

resulted in total underutilization of the spectrum. CRNs have been proposed as a reformative way to improve 

spectrum efficiency by allowing wireless radios to use their transmission parameters dynamically in response to  

environment [3]. 

CR is a wireless technology with a potential outlook that can look into the scarcity problem spectrum by enabling 

the un-licensed users (SUs) to have access to spectrum holes or white spaces that are not being  used by the licensed 

users (PUs) [4]. CR is an adaptive and intelligent wireless device that can scan the environment for spectrum, it has 

the ability to learn from the network changes, and adjust its transmission parameters accordingly. However, 

cognitive radio (CR) also poses new challenges while designing and implementing  MAC protocols, which are 

responsible for coordinating how channel can be accessed among the un-licensed users (SUs) and avoiding the 

interference with the licensed users (PUs) [5]. Some of the challenges faced include the dynamic and heterogeneous 

spectrum availability, the spectrum sensing and sharing overhead, exploration and exploitation trade-off, and the 

fairness and cooperation among the SUs [6].  

To cope with these challenges, different MAC protocols have been suggested for CR. However, most of these 

protocols are based on fixed or predefined rules or parameters, which may not be adaptable to the varying spectrum, 

network conditions leading to suboptimal spectrum utilization [7]. Moreover, some of these protocols rely on 

centralized or global information, which may not be available or scalable in decentralized or distributed CR 

networks. Therefore, there is a need for a more adaptive and decentralized MAC protocol that can learn from the 

local and online feedback and optimize the channel access strategy for each secondary user (SU). 

Reinforcement Learning (RL) offers a gripping framework for developing adaptive MAC protocols that can learn 

and optimize their performance in complex environments  [8]. Deep Reinforcement Learning (DRL), an extension 

of RL that uses deep neural networks, has shown great potential in solving high-dimensional control problems [9]. 

Q-learning is a reinforcement learning technique that allows an agent to learn the optimal policy from its own 

actions and rewards, without requiring a model of the environment. While, Deep Q-Network (DQN) is a deep 

neural network that approximates the Q-function, and can handle high-dimensional and continuous state and action 

spaces.  

Deep Q-Networks (DQNs) combine Q-learning with deep neural networks, allowing agents to approximate an 

optimal action-value function and make informed decisions across vast state spaces [9]. 

Thus, this research proposes the development of an adaptive Q-learning MAC protocol for CRNs that incorporates 

DQNs to efficiently manage spectrum access. The proposed protocol uses Q-learning to learn an optimal channel 

selection for each SU, and DQN to approximate the Q-values for each state-action pair. The proposed protocol also 

uses abetter channel observation scheme to optimize decision-making in real-time with efficient assessment of 

channel states. This maximizes spectrum utilization, minimizes interferences while ensuring an acceptable Quality 

of Service (QoS) requirements. 
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Cognitive radio networks are advanced wireless technology systems that can interact with the environment and 

adjust their operating parameters based on how they interact with the environment. They have the ability to sense 

the radio frequency (RF) spectrum, make their own decisions based on what they learn from the environment to 

optimize the use of available spectrum [10]. The need for dynamic spectrum access (DSA) protocols in cognitive 

radio networks arises from the growing needs for wireless communication services and the shortage of available 

spectrum. DSA protocols allow the efficient management and utilization of the spectrum by allowing cognitive 

radio devices to access underutilized or unused spectrum bands without interfering with licensed users (Pus) [11]. 

These protocols are essential for improving spectrum efficiency, increasing network capacity, and enabling the 

primary and secondary users to exist in a shared spectrum [12]. Dynamic spectrum access comprises techniques 

such as sharing of spectrum, assigning of channel, management of interference, as well as control, and can take 

advantage of software radio to change parameters dynamically at once. The advancement of DSA techniques is long 

formed in the field of CRN and is of important interest for various applications, including industrial IoT, wireless 

sensor networks, and 5G communications [12]. 

Recent research has examined alternative approaches to traditional methods of dynamic spectrum access, such as 

dynamic spectrum access (DSA), which is reinforcement learning base frameworks for cognitive radio sensor 

networks [13]. These frameworks can help overcome the constraints of traditional methods and better the 

performance of CRN. Additionally, research has focused on the development of scalable and energy-efficient Q-

learning-based MAC protocols for dynamic spectrum access in cognitive radio networks. These protocols aim to 

improve system performance, reduce transmission delay, and save energy in wireless systems. 

 

aterials and Methods 

This section details the methodology used for designing, simulating, and evaluating the proposed Deep 

Q-Network-based MAC protocol for Cognitive Radio Networks (CRNs). The methodology is divided 

into several phases that involve developing a near-real-world CRN topology, integrating dynamic spectrum access 

mechanisms, and evaluating the performance under various conditions, including urban, rural, and indoor 

environments. 

The proposed adaptive Q-learning MAC protocol for CRN is based on the idea of using Q-learning to learn the 

optimal channel access strategy for each secondary user (SU) in a dynamic spectrum environment. Q-learning is a 

reinforcement learning technique that allows an agent to learn from its own actions and rewards, without requiring a 

model of the environment. The Q-learning algorithm maintains a Q-table that stores the Q-values for each state-

action pair, where the state represents the current channel availability and the action represents the channel 

selection. The Q-values are updated iteratively according to the rule given in equation 1.  

 

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾𝑚𝑎𝑥𝑎 ′ 𝑄  𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎    (1) 

 

Simulation or experimental environment 

MATLAB is proposed as the main simulation tool for the proposed adaptive Q-learning MAC protocol for 

cognitive radio networks. The CRN simulation is designed to mimic real-world environments and incorporate key 

features such as user mobility, channel fading, and interference. Three distinct network environments are simulated: 

urban, rural, and indoor. The simulation parameters for each topology are provided in Table 1. 

 

Table 1: Simulation parameters  

Parameter Urban Setup Rural Setup Indoor Setup 

Number of Primary Users 20 10 5 

Number of Secondary Users 50 20 15 

Number of Channels 15 10 8 

Simulation Time (seconds) 500 500 500 

Grid Size (units) 100x100 500x500 50x50 

Mobility Speed (units/second) 1.0 0.5 0.3 

Channel Model Rayleigh Fading Rayleigh Fading Rayleigh Fading 

Interference Factor 0.1 0.05 0.2 

Noise Power (AWGN) 0.01 0.01 0.01 

 

 

The Fig. 1 above shows the spectrum usage pattern of primary users across ten channels over the same 100-second 

period. Black represents channel occupancy by a primary user, while white indicates availability. The heatmap 

reveals a dynamic and non-uniform pattern of primary user activity across channels and time. Some channels 

experience higher occupancy rates than others, and the occupancy pattern is not consistent over time. This 

highlights the unpredictable nature of primary user behaviour in a cognitive radio environment. 
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Figure 1: Primary user spectrum usage heatmap 

 

 

 
Figure 2: Secondary user channel access attempts 

heatmap 

 

Figure 2 depicts the heatmap representing the channel access attempts made by ten secondary users over a time 

period of 100 seconds. The colour intensity represents the number of attempts on a given channel at a specific time. 

The heatmap reveals a dynamic pattern of channel access attempts, with varying levels of activity across different 

users and time slots. This non-uniformity suggests that the algorithm is adapting its channel selection strategy over 

time. 

 

esults and Discussion 

The primary focus is on evaluating the network throughput for the three outcomes (indoor, rural, and urban) 

environments. 

 

A. Urban scenario 

 
Figure 3: Network topology for urban scenario 

 

 

Figure 3 illustrate the urban topology with 50 secondary users, 20 primary user, and 15 channels. The throughput is 

notably high due to the DQN’s ability to learn and adapt in a highly congested environment. However, the presence 

of a large number of users results in fierce competition for channels. The DQN-based MAC protocol significantly 

outperforms the random channel selection protocol, with about 71% higher throughput. The DQN effectively 

identifies idle channels, minimizing interference with primary users. 

B. Rural  scenario 
Figure 4 depicts the rural network scenario with fewer users (20 secondary users and 10 channels); the throughput is 

generally higher per user as there is less competition for available channels. Remarkably, the DQN-based MAC 

protocol demonstrates about 29% higher throughput compared to the random channel selection, benefiting from less 

congestion and more efficient channel access. 
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Figure 4: Network topology for rural scenario  

 

 

 
Figure 5: Network topology for indoor scenario 

 

C. Indoor scenario 

Figure 5 below depicts the indoor topology (IoT, Smart devices), with its smaller grid size and fewer users, presents 

a unique challenge due to interference from closely spaced devices. However, the DQN still manages to outperform 

the baseline protocol. The DQN-based MAC protocol shows 42% improvement in throughput in indoor 

environments compared to random selection. 

Figure 6 represents the throughput performance evaluation using DQN-MAC protocol against the random selection 

approachacross the three scenarios (urban, rural, and indoor). The results show that our proposed DQN-MAC 

protocol outperforms the random channel selection method in all the three outcomes. 

 

 

 
Figure 6: Throughput performance comparison for 

DQN-based MAC and random channel selection 

 

 

 
Figure 7: Collision rate comparison 

 

 

Figure 7 illustrate the collision rates of the three scenarios (urban, rural, and indoor). The DQN demonstrates a 

substantial reduction rate in collisions across all environments (5, 3, and 4%), especially in the rural setting compare 

to the random selection approach (12, 7, and 9%). This underscores the algorithm's effectiveness in coordinating 

channel access and avoiding simultaneous transmissions. While the collision rate reduction is most significant in the 

urban environment, the DQN still outperforms random selection in rural and indoor settings. This indicates the 

effectiveness of the DQN's learning mechanism in adapting to varying environmental conditions. 

 

 

onclusion 

The research conducted in this study successfully demonstrates the effectiveness of a Deep Q-Network 

(DQN)-based MAC protocol for Cognitive Radio Networks (CRNs). The DQN-based protocol achieves 

significant improvements in throughput, collision avoidance, and transmission quality (SINR) compared to 

traditional random channel selection. By enabling secondary users to learn from the spectrum environment and 

optimize their channel access strategies, the DQN-based MAC protocol provides a scalable and adaptive solution 

for dynamic spectrum access. The results of this research have important implications for the design and 

deployment of future wireless networks, particularly in scenarios where spectrum resources are scarce, and user 

density is high. 
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