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ABSTRACT
There has been growing interest in exploiting potential forecast gains from the nonlinear structure of 
autoregressive time series. Several models are available to fit nonlinear time series data. However, before 
investigating specific nonlinear models for time series data,it is desirable to have a test of nonlinearity in the 
data. And since most of real life data collected are non-stationary, there is need to investigate which of these 
test is suitable for stationary and non-stationary data. Statistical tests have been proposed in the literature to 
help analysts to check for the presence of nonlinearities in observed time series, these tests include Keenan 
and Tsay tests, and they have been used under the assumption that data is stationary. However, in this paper, 
we investigated the performance of these two tests for the stationary and non-stationary data. The effect of the 
stationarity and non-stationarity were studied on simulated data based on general class of linear and nonlinear 
autoregressive structures using R-software. The powers of tests were compared at different sample sizes for 
the two cases. It was observed that the Tsay F-test performed better than Keenan’s tests with little order of 
autoregressive and increase in sample size when data is non-stationary and vice-versa when data is stationary. 
Finally, we provided illustrative examples by applying the statistical tests to real life datasets and results 
obtained were desirable.
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INTRODUCTION
Several techniques used in time series modeling 
assume linear relationships among variables. 
However, in some cases, variations in data do not 
show simple linearity and therefore, are difficult to 
analyse and predict accurately. Hence, for such data, 
it would not be practicable to expect a single, linear 
model to capture these distinct behaviours. Linear 
relationships and their combinations for describing 
the behaviour of such data are often found to be 
grossly inadequate. In general time series analysis, it 
is known that there are large numbers of nonlinear 
features such as cycles, thresholds, bursts, chaos, 
heteroscedasticity, asymmetries and combinations 
of one or more of these. Tong (1990), Franse, and 
van Dijk (2000) and Tsay (2010) have presented the 
various types of models that can be cast into these 
forms.
	 Nowadays, there are various applications of 
nonlinear time series models to different fields, such as 
meteorology, finance, engineering and econometrics. 
The nonlinear time series models have been used 
extensively in recent years for modeling time series 
data that cannot be adequately represented using linear 
models. Hipel and McLeod (1994) hypothesized that, 
although a linear model may be adequate to describe 
average annual river flows, the relationship between 
daily river flow and precipitation may be nonlinear. 
For examples, Tong (1990) provides an introduction 
to different types of nonlinear time series modeling 
primarily in the univariate setting. Chen and Tsay 
(1993, 1996) and Lewis and Ray (1997) investigated 
techniques for obtaining bivariate nonlinear models. 
Terasvirta (1993) mentioned vector nonlinear 
autoregressive processes, vector nonlinear average 
processes and multiple bilinear time series models in 
passing but concentrated on statistical inference for 
nonlinear models using parametric procedure.
	 Before fitting a nonlinear time series model 
to a given set of data, it is good if the nonlinearity 
characteristics of the data can be detected. There are 
various tests that have been suggested over the past 
years to distinguish linear from the nonlinear data sets. 
For example, Hunnich (1982) used the bispectrum 
test. They used the fact that the square modulus of 
normalized bispectrum is constant when the time 
series is linear. The hypothesis is based on the non-
centrality of parameters of the marginal distribution 
of the square moduli, where n is the sample size. Yuan 
(2000) modified the Hunnich’s test in such a way that 
the parameter being tested under the null hypothesis is 
the location parameters, such as the mean or variance. 
	 The problem of nonlinear time series 
identification and modelling has attracted considerable 
attention for years in diverse fields such as biometrics, 

socioeconomics, transportation, electric power 
systems, and finance which exhibit nonlinear process. 
A good nonlinear model should be able to capture 
some of the nonlinear phenomena in the data. Once 
a model is selected, sufficiently strong evidence need 
to be found in the data to abandon the linear model. 
Therefore, good statistical and diagnostic tests are 
needed to determine the nonlinearity in time series 
data.
This work examined the performance of two 
nonlinearity tests in time series analysis; these are 
Kennan’s test and F-test of nonlinearity. The power 
efficiency of each test wasstudied on different sample 
size, models and under the violation of assumption 
of stationarity based on simulated data and real data 
collected. 
Stationarity
In Statistics, a stationary processis a stochastic process 
whose joint probability distribution does not change 
when shifted in time. Consequently, parameters such 
as the mean and variance, if they are present, also do 
not change over time.The most important assumption 
made about time series data is that of stationarity. 
The basic idea of stationarity is that the probability 
laws that govern the behavior of the process do not 
change over time. In indeed, the process is statistically 
equilibrium. Specifically, a process {Yt} is said to be 
strictly stationary if the joint distribution of Ytis the 
same as that of Yt− kfor all t and k; t = 1, 2, …, k. 
In other words, the Y’s are (marginally) identically 
distributed (see Jonathan and Kung-Sik, 2008). It then 
follows that E(Yt) = E(Yt− k) for all t and k so that the 
mean function is constant for all time. Additionally, 
Var(Yt) = Var(Yt− k) for all t and k so that the variance 
is also constant over time.

Linear Time Series Model
A relationship of direct proportionality that, when 
plotted on a graph, traces a straight line. In linear 
relationships, any given change in an independent 
variable will always produce a corresponding change 
in the dependent variable. For example, a linear 
relationship between production hours and output in a 
factory determines percentage of increase or decrease 
of the output. The concept of linear relationship 
suggests that two quantities are proportional to each 
other: doubling one causes the other to double as well. 
	 Linear relationships are often the first 
approximation used to describe any relationship, even 
though there is no unique way to explain what a linear 
relationship is in terms of the underlying nature of the 
quantities. For example, a linear relationship between 
the height and weight of an object is different from 
a linear relationship between the volume and weight 
of an object. The second relationship makes more 
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sense, but both are linear relationships, and they are, of course, incompatible with each other. Medications, 
especially for children, are often prescribed in proportion to weight. This is an example of a linear relationship.
The linear time series modeling depends on the type of system that generates the data. Time series analysis 
may be Autoregressive Models, Moving Average Model or Autoregressive Moving Average Model (ARMA). 
However For the purpose of this research work we considered only general classes of second order auto 
regressive models.

Nonlinear Time series Model
Practitioners in many fields are increasingly faced with real data possessing nonlinear attributes. It is known 
that stationary Gaussian autoregressive models are structurally determined by their first two moments. 
Consequently, linear autoregressive models must be time reversible. Many real datasets are time irreversible, 
suggesting that the underlying process is nonlinear. Indeed, in Tong’s seminal paper on threshold models, 
he would argue that no linear Gaussian model could explain the cyclical dynamics observed in sections of 
the lynx data (Tong and Lim, 1980). Furthermore, he argued that characteristics of nonlinear models, such 
as time irreversibility and limit cycles, mandated the development of practical nonlinear models to help 
resolve ongoing difficulties in real data. Tong’s explanation and application of locally linear threshold models 
introduced striking opportunities for model building strategies.
	 The pioneering work in time series modeling is due to Wiener who had produced a very general class 
of nonlinear model, called Volterra series expansion and is generally given as follows; 

Xt=  +    1

Xt=  +      2

Where µ is the mean level of  (  ) is a strictly stationary process of independent and 
identically distributed random variables. Obviously, Xt is nonlinear if one of the higher order coefficients

 or  is non zero(Ibrahim et al, 2005). 
For instance, the model 1 and 2 above can be illustrated with simple structures (i, j = 1, 2, k = 0) as follows;

	
       ..............3

	

     ...........4

Most linear models can be expressed into Volterra expansion form which includes the autoregressive model 
of order p, [AR (p)], the moving average model of order q [MA (q)] and the autoregressive moving average 
model of order p and q [ARMA (p,q)]. 

MATERIALS AND METHODS
Several authors such as Chan and Tong(1986) and Tsay (1986) raised the issue that one nonlinearity test is not 
enough to detect nonlinearity in a data set. Nonetheless, it is expected that the nonlinearity test will suggest 
whether a data set is linear or otherwise. Thus, if any test does suggest that the data is nonlinear, we expect that 
a nonlinear model will improve the modeling of the data set.
	 Indeed, in this work, a set of data were generated from model 1-4, under the assumption of stationarity 
stated earlier and the two tests, Keenan and F-tests of nonlinearity were applied to see the behavior of their 
acceptance of nonlinearity. Thereafter, another set of data were generated under the violation of the stationarity 
and white noise assumptions.Each test is subjected to 500 replication simulation at different sample sizes for 
stationarity and Non-Stationarity data structures.Both tests are based on time domain approach and suitably 
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applied on data generated from selected linear and nonlinear auto regressive models. Power efficiency of the 
tests was compared on the simulated data.  

Keenan’s Test
Keenan adopted the idea of Turkey one degree of freedom test for non-additivity to derive a time domain 
statistic. The test is motivated by similarity of  Volterra expansions to polynomials, and is extremely simple, both 
conceptually and computationally. Assume that a time series Yt, t = 1, 2, .., n, can be adequately approximated 
by order of Volterra expansion in 1 and 2
The approximation will be linear if the second and other higher terms on the right hand side are zero. The 
Keenan’s test procedure is as follows;
(i)Regress Yt on ( 1, Yt-1, . . . Yt-m) and calculate the fitted values(Yt), and the residuals, , for t = m+1,  . . ., 
n, and the residual sum of squares 	

(ii)Regress Yt2 on ( 1, Yt-1, . . . Yt-m) and calculate the residual (et) for t = m,  . . ., n, 

(iii) Regress  on  

and obtain  from

 

Where  is the regression coefficient, and 

Follows approximately F1,n-2M-2, , where the 

degrees of freedom of associated with   is (n-M)-M-1.

Keenan’s test is based on the argument that if any of cij and other higher coefficients in 1 and 2 are non-zero, 
e.g c12, then this nonlinearity will be distributionally reflected in the diagnostics of the fitted linear model, if 
the residuals of the linear model are correlated with Yt-IYt-2. As in Turkey non additive test, Keenan’s test 
used the aggregated quantity Y2t, the square of the fitted value of Yt based on the fitted linear model, to obtain 
the quadratic terms upon which the residual can be correlated. The idea is extremely valuable when the sample 
size is small because it only requires one degree of freedom.

F-Test 
Tsay (1986) modifies Keenan’s test by replacing the aggregated quantity Y2t by the disaggregated variable 
Yt-iYt-j, i,j = 1, …., M, where M is defined in Keenan’s test. The F-test procedure is as follows:
(i) Regress Yt on ( 1, Yt-1, . . . Yt-m) and calculate the fitted values(Yt), and the residuals, ( ) ̂, for t = M+1,  
. . ., n. the regression model is denoted by
	 Yt = Wt  + et,  where,
	 Wt = ( 1, Yt-1, . . . Yt-m) and = ( )T.

(ii)Regress vector Zt on ( 1, Yt-1, . . . Yt-m) and calculate the residuals (Xt), for t = M+1, ..., n. In this step, 
the multivariate regression model is Zt = WtH + Xt, where Zt is an m =  dimensional vector defined by ZTt = 
Vech (UTtUt) with Ut = (Yt-1, . . . Yt-m), and Vech denoting the half stacking vector

	
(iii) Fit 
                         And define 

Where the summation is over t from M+1 to n. Here,  is asymptotically distributed as Fm,n-m-M-1
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MODELS SELECTED FOR SIMULATION
Data is generated from several linear and nonlinear second orders of general classes of autoregressive models 
given below:
Model 1. AR(2): 

Model 2.TR(2): Yti = 0.3sin( ) - 0.6cos( )+ et

Model 3:EX(2): Yti = 0.3 + exp(-0.6 ) + et

Model 4: PL(2):  Yt = 
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The model 1, 2, 3 and 4 are linear, trigonometry, 
exponential and polynomial autoregressive models 
respectively with coefficients of Yt-1 being 0.3 and 
Yt-2 being -0.6. Simulation studies were conducted 
to investigate the performance of Keenan’s and 
F-test. The hypothesis test were null hypothesis of 
nonlinearity against the alternative hypothesis of 
linearity of data. Thus, if the data is linear with α = 
0.05, more than 95% of the replicates are expected 
to have the test statistic less than the critical values. 
Power of the two tests is compared for the different 
models, sample size and distributions to know which 
of the two tests is acceptably good for detecting 
nonlinearity for time series data generated from the 
given model.
	 Note that in autoregressive modeling, the 
innovation (error), et process is often specified as 
independent and identically normally distributed. The 
normal error assumption implies that the stationary 
time series is also a normal process; that is, any finite 
set of time series observations are jointly normal. 
For example, the pair (Y1,Y2) has a bivariate normal 
distribution and so does any pair of Y’s; the triple 
(Y1,Y2,Y3) has a trivariate normal distribution and so 
does any triple of Y’s, and so forth. Indeed, this is one 
of the basic assumptions of stationary data. However, 
in this study, the data will be generated under white 
noise assumption of stationarity and when the 
stationarity assumption is violated for order of past 
responses and random error terms to see behavior 
of the models in each case. 3000 replications were 
used to stabilize models estimations at different 
combinations of n and models.

Selection Rule
Theaverage acceptance of linearity by each test 
was recorded as in table 1-4, at n=50, 150 and 300 
representing small, mild and large samples respectively 
for each case (stationarity and Non-Stationarity) and 
model. The test with highest proportion of acceptance 
in a category is the best for that category. Note that 
only second order autoregressive models were 
considered in each case and situation

RESULTS AND DISCUSSIONS
Relative Performance of Keenan- and F-Tests on 
General Class of Stationary Autoregressive Cases 
at Different Sample Sizes
The performance of the following Keenan- and F-tests 
in detecting general classes of linear and nonlinear 
autoregressive cases were examined at sample size of 
50, 150, and 300 which represent small, mild and large 
sample sizes respectively. The data were simulated 
using R statistical software following the assumption 
of stationarity earlier stated to fix the parameters. The 
parameters were fixed for each model as shown in 
model 1-4 to observe how the tests would accept the 
null hypothesis of linearity of stationary data. The 
white noise assumption of the error term was also 
observed to make the data simulated be stationary. 
Each created data were replicated 1000 times using 
TSA Package in R software. 

Table 1: Empirical frequencies of rejection of the null 
hypothesis of linearity; 
n =50 and 1000 replications. Nominal significance 
level, 0.05 (Stationary Data)
Model Keenan’s Test F-Test
Model 1 0.8505 0.6198
Model 2 0.6449 0.5046
Model 3 0.6756 0.0283
Model 4 0.0033 0.0005

Table 2: Empirical frequencies of rejection of the null 
hypothesis of linearity; 
n =150 and 1000 replications. Nominal significance 
level, 0.05(Stationary Data)
Model Keenan’s Test F-Test
Model 1 0.4731 0.9280
Model 2 0.0514 0.0414
Model 3 0.0088 0.0062
Model 4 0.0012 0.0000
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Table 3: Empirical frequencies of rejection of the null 
hypothesis of linearity; 
n =300 and 1000 replications. Nominal significance 
level, 0.05(Stationary Data)
Model Keenan’s Test F-Test
Model 1 0.5179 0.8706
Model 2 0.0735 0.0179
Model 3 0.0169 0.0061
Model4 0.0000 0.0000

Table 4: Effect of Sample size on the Power of the 
Tests for model 1-4
  Nominal significance level, 0.05 (Stationary Data)

Model Sample Size Model 1 Model 2 Model 3 Model 4

Keenan 50 0.6198 0.6449 0.6756 0.0033

150 0.4731 0.0514 0.0088 0.0012

300 0.5179 0.0735 0.0169 0.0000

F-test 50 0.8505 0.5046 0.0283 0.0005

150 0.9280 0.0414 0.0062 0.0000

300 0.8706 0.0179 0.0061 0.0000

Relative Performance of Keenan- And F-Tests on 
General Class of Non-Stationary Autoregressive 
Cases at Different Sample Sizes
One of the objectives of this study is to find out the 
performance of Keenan and F-test of nonlinearity on 
general classes of linear and nonlinear autoregressive, 
simulated with violation of assumption of non-
stationarity. Since most of real life data collected are 
non-stationary, there is need to investigate which of 
these tests is suitable for non-stationary data. One 
major assumption of stationarity is validity of white 
noise assumption of error term; the error term is 
independently distributed with zero mean and positive 
variance.
	 Indeed, in this work non-stationarity was 
injected in our simulated data from different models 
used for the simulation by violating the independence 
and normality assumption of error term in the 
following way to know the effect of non-stationarity 
on each model at different sample sizes: the results 
are displayed in table 5-8

        
The value of mean and variance were specified based 
on the history of nature of real life data considered, 
Data on Nigeria Gross Domestic Products (GDP)

Table 5: Empirical frequencies of rejection of the null 
hypothesis of linearity; 
n =50 and 1000 replications. Nominal significance 
level, 0.05 (Non-Stationary Data)
Model Keenan’s Test F-Test
Model 1 0.3697 0.4607
Model 2 0.000 0.3072
Model 3 0.0000 0.3123
Model 4 0.0000 0.0034

Table 6: Empirical frequencies of rejection of the null 
hypothesis of linearity; 
n =150 and 1000 replications. Nominal significance 
level, 0.05 (Non-Stationary Data)
Model Keenan’s Test F-Test
Model 1 0.3840 0.2088
Model 2 0.0000 0.7596
Model 3 0.0000 0.3953
Model 4 0.0000 0.0017

Table 7: Empirical frequencies of rejection of the null 
hypothesis oflinearity; 
n =300 and 1000 replications. Nominal significance 
level, 0.05 (Non-Stationary Data)
Model Keenan’s Test F-Test
Model 1 0.9811 0.0819
Model 2 0.0000 0.2931
Model 3 0.0169 0.0061
Model 4 0.0000 0.0000

Table 8: Effect of Sample size on the Power of the 
Tests for model 1-4
  Nominal significance level, 0.05 (Non-Stationary 
Data)
Model Sample Size Model 1 Model 2 Model 3 Model 

4
Keenan 50 0.3697 0.0000 0.0000 0.0000

150 0.3840 0.0000 0.0000 0.0000

300 0.9811 0.0000 0.0000 0.0000
F-test 50 0.4607 0.3072 0.3123 0.0034

150 0.2088 0.7596 0.3953 0.0017
300 0.0819 0.2931 0.7670 0.0000

Table 9:  Results of Nonlinearity Tests on Nigeria 
GDP
Test Test Statistic Critical value Conclusion

Keenan’s Test 10.982 0.0052 Nonlinear

F-Test 8.0797 0.0293 Nonlinear
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Table 1-8 show the results of analyses of performance 
of Keenan’s test and F-test with respect to the model 
1-4 at small, mild and large sample sizes taken to be 
50, 150 and 300 respectively under the assumption 
of stationarity and violation of the assumption of 
stationarity. The two tests were compared at the 5% 
level of significance for two tailed test in each case. 
The average powers of the tests for both tests were 
computed for easy comparison. 

CONCLUSION
We noticed that both test do not reject the linearity 
of the Model 1, linear autoregressive at different 
sample sizes. However, F-test has higher power of 
acceptance than Keenan test when data is stationary 
while Keenan’s test performs better for non-stationary 
data especially at large sample size. In model 2-4, 
trigonometric, exponential and polynomial auto 
regressive models respectively, most of the average 
p-value are less than the 5% level of significance and 
as the sample size increases the p-value decreases 
indicating the significant of linearity of the models by 

the two tests. Meanwhile, the F-test perform better as 
its average p-values are less than Keenan’s test at the 
three sample sizes for stationary data and vice versa 
for non-stationary data as shown in the summary 
Table 4 and 8. 
	 More so, both tests wrongly accept the null 
hypothesis of linearity for model 2, 3, and 4 with 
their average p-values greater than 5% level of 
significance at sample size 50 for stationary data. 
When the Non-Stationarity was introduced in data 
generated F-test’s p-value were greater than 5% 
and therefore wrongly accept the null hypothesis of 
linearity of nonlinear autoregressive model except 
that of polynomial model which its linearity was 
rightly rejected and more powerful when the sample 
size increases. While Keenan’s test has the p-value 
close to zero which show the significant of linearity 
of the three nonlinear models at the three sample sizes 
and therefore considered as the most powerful test for 
non-stationary data
	 Finally, we provided illustrative examples by 
applying the statistical tests to real life datasets and 
results obtained are desirable.
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