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ABSTRACT
This paper is concerned with a nonlinear system called the FitzHugh-Nagumo system. We concentrated on the 
derivation of the system from the aspect of the nature of excitable cell model and gating model of Hodgkin-
Huxley system. Furthermore, reduction of a   Hodgkin-Huxley system to a  FitzHugh-Nagumo system is also 
investigated and we concluded by depicting the two different variations of FitzHugh-Nagumo system that are 
widely used by researchers in the fields of neurophysiology and cardiac muscle model. This paper evaluates 
further ways in which this FitzHugh-Nagumo system can be applied.
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INTRODUCTION
Alan Lloyd Hodgkin and Andrew Huxley, between 
1948 and 1952 conducted an experiment on the 
movement of action potential in the giant squid axon, 
which was suitable for a large portion of the nerve 
tissue at that time. In an effort to give mathematical 
meaning for the excitable nature, they constructed a 
model for the patch clamp experiment. Applying the 
Kirchhoff’s conservation of current law and using the 
configuration of an equivalent circuit for space clamp 
axonal membrane, Hodgkin and Huxley formulated 
a   differential equation called the Hodgkin-Huxley 
model Edelstein-Keshet, (2005).
        The main analysis of Hodgkin-Huxley model 
was performed independently by Richard FitzHugh 
and Jin-IchiNagumo who noticed that they can, under 
some assumption, reduce the   differential system to a   
differential system. The outcome of their experiment 
is what is now known as FitzHugh-Nagumo system. 
The FitzHugh-Nagumo system is the simplified form 
of the Hodgkin-Huxley system that explains the inner 
working process of the Hodgkin-Huxley system and a 
major model in the study of neuron physiology since 
mid 19th century. The FitzHugh-Nagumo system 
has been used in many different types of biological 
modelling (e.g. neurophysiology model, cardiac 
muscle model etc).
The dynamical behaviour of the FitzHugh-Nagumo 
system is very vital in the analysis and understanding 
of more difficult systems, so in this paper we focus 
on the system by investigating the reduction of the 
system from a   differential system to a  differential 
system.

NATURE OF EXCITABLE CELL MODELS- 
HODGKIN-HUXLEY MODEL
Conventionally, it was known that the cell membrane 
separates the internal working parts of the cell from 
its external parts, and it allows the passage of some 
materials and restricting the passage of others, thus 
controlling the movement of materials to and from the 
cell. A basic model for describing the aforementioned 
process is that of parallel capacitor and resistance, 
which has the form
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Here Cm  is the cell membrane capacitance, V  the 
reversal potential ( is the membrane potential at 
which there is no net flow of that particular ion 
from one side to the other of the membrane ),Veq   is 
the resting membrane potential that balance the 
reversal potentials for the other ionic currents,  R  is 

the resistance, and  I is the applied electric current 
Friedman and Kao (2014). 
In early 20th century, it was established in a major 
achievement in patch clamp experiments that many 
cell membranes are excitable, meaning that if 
sufficient current is being applied they exhibit large 
changes in potential. Nerve cells and some muscle 
cells are examples of such cells, see for example 
Keener and Sneyd (2009).
      Hodgkin-Huxley, between 1948 and 1952 conducted 
an experiment on the giant squid axon, which was 
suitable for a large part of nerve tissue at that time. 
In an attempt to give mathematical clarification for 
the excitable nature, they constructed a model for 
the patch clamp experiment. They assumed that the 
electrical activity of the squid giant axon is dominated 
by the movement of sodium and potassium ions across 
the membrane. Thus, Na+ and K+  use two different 
channels to go through. Furthermore a leakage 
channel through which chloride Cl-  and other ions 
can pass, are also included in the neuronal membrane 
of the model. 
    The equivalent circuit diagram for space-clamped 
axonal membrane of the Hodgkin-Huxley model is 
shown in the Figure 1. Here I  is the current, V is the 
voltage, C is the capacitance and g is the electrical 
conductivity.
The membrane act as a capacitor while the presence 
of channels can be modelled as resistors whose 
conductivities (inverse resistances) are gNa+ ,gK  and 

Lg   for the sodium, potassium and Leakage potential 
channels respectively. On the other hand   VNa+ 
, Vk  and   Vk represent the potentials for each each 
individual ion, which account for the ionic currents 
due to the concentration difference of the ions across 
the membrane.

Figure 1: The equivalent circuit for space-clamped 
axonal membrane of the Hodgkin-Huxley model. 

The conductivities of the Na+ and K+ channels are 
functions of time and the membrane potential, while 
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the conductivity of the leakage channel is a constant 
and the change in the membrane potential do not 
affect it Kistlerl et al.,  (2002).
The   channel consists of four independent activation 
gates (i.e. four identical subunits) that opens when the 
membrane potential is depolarised, allowing the flow 
of current through it. Thus, the current through these 
channels will then be given by 

))(()()( 44
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where kg   is the maximum conductivity, a constant 
proportionality  and )(tnn =   is the fraction of 
open activation gate at time .t   In the same way, the   
channel contain three activation gates which are 
independent of each other and opens when the neuron 
is depolarised, and also contain an activation gate that 
closes the channel when the membrane potential has 
been depolarised for some time t . Thus, the current 
through this channel can be given by 
 

where  is the maximum conductivity of the channel 
proportional to an additional fraction of open 
inactivation gates variable  , and   is the 
fraction of open activation gates at time  . The gating 
variables   and    constitute the fraction of all 
the gating variables of the Na+   channels in the open 
state at time  . 

The Gating Model of the System 
It was observed that the movement of sodium and 
potassium ions across the cell membrane of a neuron 
shows that sodium has a transient conductivity while 
potassium has a persistent conductance: see Figure 2 
Mondeel, (2005).
 

Figure 2: (A) is an example of a persistent conductance 
gate. The gate opens and closes by a sensor which 
responds to the membrane potential. (B) is an example 
of a transient conductance gate, the activation gate 
connect with a voltage sensor that functions like the 
gate in A Mondeel, (2005). 

For the persistent conductivity gate to open a number 
of changes have to take place. The potassium channel, 
for example consists of four identical subunits, and 
for the channel to open, all four must experience a 
systemic change. This systemic change has to do with 
independent events. If  b is identical, then independent 
events are needed to open a channel, and one of 
these events occurs with the probability n. Thus the 

conductance can be written as bng =  where n is a 
gating variable. If the present channels are many and 
they function independently of each other, then the 
fraction of channels open at any given moment is 
approximately equal to the probability that any of the 
channels is open. This is the implementation of the 
law of large numbers Mondeel, (2005).
      If we assume that the n subunit gate controls the 
opening and closing state of the channel at a given 
time, then the probability that one of the subunit gate 
will be open is n and the probability that it will be 
close is 1-n. Therefore the transition of each subunit 
gate can be expressed as a first-order scheme in 
which the gating movement from closed to open 
occurs at a voltage-dependent rate )(Vnα  , and the 
reverse movement open to close occurs at a voltage-
dependent rate )(Vnβ  . The probability that a subunit 
gate opens over a small period of time is proportional 
to the probability of finding the gate closed, 1-n, times 
the opening rate )(Vnα   . Conversely, the probability 
that a subunit gate closes over a small amount of time 
corresponds to the probability of finding the gate 
open n times the closing rate )(Vnβ   .
Thus the open probability for a subunit gate changes 
at a rate given by the difference of these two terms 
and so we derive the differential equation
          
                                          ............ (2)
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This equation actually implies that for a fixed voltage 
V, n tends to the value of )(Vn∞   exponentially with 
time constant ).(vnτ   Here )(Vnα  and )(V∞β   are the 
opening and closing rate functions of voltage. All 
these are achieved by suitable experimental data 
based on a technique called voltage clamping which 
Hodgkin and Huxley used in their experiments 
Mondeel, (2005).
Applying the Kirchhoff’s conservation of current law 
and using the configuration of Figure 1, the Hodgkin-
Huxley model can be written as 

             .............(3)
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where  is the applied current. Then equation (3) can 
be rewrite as 
  ...............(4)

Hodgkin and Huxley proposed that n, m and h are 
the potential dependent gating variables that obey 
the voltage dependence described by the differential 
equations:

            ...................(5a)

     ......................(5b)

       .........................(5c)
where the quantities hnnmm αβαβα ,,,,  ,  and hβ  are 
assumed to be voltage dependent as follows:
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Equations (4), (5a), (5b) and (5c) represent a   
differential system called the Hodgkin-Huxley model 
Edelstein-Keshet, (2005). The model does lay a base 
for qualitative behaviour for the formation of action 
potential and basis for nearly all models of excitable 
cell membrane.
     We can rewrite each of the equation (5a)-(5c) in 
the form 
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for greater insight. Here z represent m, n or h. For any 
fixed voltage v, z tends to )(0 vz  with a time constant 

)(vzτ , where the asymptotic value  )(
0

vzτ  and the time 
constant  are given by
 

  
and

  

The parameters used are those specified by Hodgkin 
and Huxley, see Figure 3 and Figure 4 where the 

functions of )(
0

vzτ  and )(vzτ  are shown Schwemmer, 
(2005).

THE FITZHUGH-NAGUMO MODEL
Reduction from a 44×   to 22×  a  System 
Fitzhugh and Nagumo noticed that they can under 
some assumption reduce the four by four differential 
system (4), (5a), (5b) and (5c) to a two by two 
differential system. The basic concept of the reduction 
can also be applied to that of neuron model with 
various ion channels. To perform this task, we have to 
eliminate two out of the four variables. We start with 
two qualitative observations in Figure 3 and Figure 4:

Figure 3: The equilibrium function for variables m, 
n, and h in the Hodgkin-Huxley Model. The resting    
potential is at v=0.

 

Figure 4: The time scale for variables m, n, and h in 
the Hodgkin-Huxley Model. The resting potential is 
at v=0.

In Figure 4 we notice that the kinetics of the gating 
variable m changes rapidly while that of the variables 
n, h and v changes relatively slowly, which is a 

consequence of mτ   being smaller than  nτ  and hτ   
( nm ττ ,  , and   hτ  are the time scales for m, n and h 
respectively). It also shows that m can be considered 
as an instantaneous variable that can be replaced in 
equation (4) by its steady-state value, )),(()( 0 tvmtm →     
which is called the quasi steady state approximation 
Schwemmer, (2005).  Furthermore, from Figure 
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4, we observe that the time scale )(vnτ  and )(vhτ    
are close no matter the value of v, and even more 
there is similarity with the graphs of   )(0 vn  and 

)(1 0 vh−   in Figure 3. This shows that the variables 
n and 1-h can be approximated as a single functional 
variable w. To make it more universal, we take the 
linear approximation of d-h = bn, where d, and b are 
constants and we let w = d-h = bn. Now  h = d-w,

 b
wn =  , )(0 vmm =  .  Then the system (4), (5a), (5b) and 

(5c) takes the form:
 
 ............(7)

or by introducing a new variable v, it can be written as

                      ........................(8)

Where  
Lg

R 1
= , and   is actually the time scale 

of time of v while F denotes a function. Since m is 
regarded as constant, we are left with n and h which 
are lump together as a single functional equation

                     ...........................(9)

where wτ  is the time scale of w. The equations (8) 
and (9) define a   neuron model Schwemmer, (2005).
Replacing the four equations of Hodgkin and Huxley 
by the two equations (8) and (9), FitzHugh and 
Nagumo obtained sharp pulse like oscillations that 
are similar to that of action potentials by describing 
the functions F(v, w) and Q(v, w) as

wvvwvF −−=
3

),(
3
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where v is the membrane voltage, and w is the recovery 
variable. F and Q are linear in w and the cubic term in 
v is non-linear. So we finally obtain the system

           

              
                .................................(10)

 where  0b  and 1b  are positive constants. The system 
(10) is an example of FitzHugh-Nagumo System 
Schwemmer, (2005).

Two Different Variations of FitzHugh-Nagumo 
System
The FitzHugh-Nagumo system has been derived and 
written in different variations by researchers to suit 
their specific research work. In this section we look at 
two different formulations and then focus on the one 
we will use in the current work.
       Firstly, we consider two variables x and y and 
model properly the FitzHugh and Nagumo system. 
We define the variable x as the measure of excitation 
(such as voltage in a neuronal setting),  hence x is 
the fast variable (replacing variables V and m in 
the Hodgkin-Huxley system) and use y as the slow 
recovery variable (replacing variables n and h in 
the Hodgkin-Huxley system), which damps out the 
excitation of x when increased. Making the equation 
simple enough for the rate of change for x and y, we 
assume that x and y satisfies the linear kinetics,Segel 
and Edelstein-Keshet (2013): 

          .............................(11a)

          ....................................(11b)

System (11) is the FitzHugh-Nagumo system we 
will focus on in this work. Here the parameters c and 

c
1

  are introduced to create a symmetry that makes 
x faster and y slower whenever c is increased. The 
parameters a, b, and c are all positive, and satisfy the 

conditions 1
3
21 <<− ab     and 0 < 1. The parameter d 

denotes the stimulus and can have any sign, Segel and 
Edelstein-Keshet (2013).
In the second formulation of the FitzHugh-Nagumo 
system, we consider the phase portrait below

 

Figure 5: The profile of   as a function of v Olufsen, 
(2015). 
As it is shown in Figure 5, v denotes the voltage of 
the action potential that has three critical values: v 

= 0, as the resting potential, α=v  , as the threshold 
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,1),10( =<< vα   as the voltage level when   
channels are closed.
We want to create a differential equation for v = v(t). 
To achieve that we have to express    as a function 
of  v. Since v =0 then  , but when the Na+   start 
to open the voltage increases, so   and the more v 
increases, the neuron fires at α=v  , hence  .  Finally 
the voltage decreases such that the   channels 
closes at x = 1, so that  .  The easiest description 
for   as a function f(v) of  v is expressed in Figure 5 
Olufsen, (2015). 

           An expression that is compatible with the form 
of Figure 5 is given by

    ..........................(12)

Introducing the variable w that acts to diminish v into 
(12), we now have

   ................(13)

Introducing the applied electric current I to the right 
hand side of (13), and suppose that   increases 
linearly in v and that w decreases linearly, then we get 

 

                  .........................(14)
 

which is the FitzHugh-Nagumo model in 
dimensionless form, where v represents the fast 
variable (potential) and w denotes the slow variable 
(sodium gating variable). Besides ,,γα   and ε    are 
constants satisfying the conditions   10 << α  and 

10 ≤< α  Olufsen, (2015).

CONCLUSION
Hodgkin-Huxley system was used to study an 
excitability phenomenon for nonlinear system which 
resulted to FitzHugh-Nagumo system. The paper 
focused on the derivation of the system and its 
reduction from   differential equation to a   differential 
equation. The paper also investigated all the 
mathematics in the reduction and depict the two most 
widely used variations of the system by researchers in 
the fields of neurophysiology, cardiac muscle model 
etc.
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