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ABSTRACT 

In this paper, we investigate the factorization of singular partial self-maps on a finite set into products of the least 

number of nilpotent elements. This research demonstrates that the semigroup of such maps can be expressed within 

a union of nilpotent-generated sets, specifically up to the third power. Some of our key findings include the 

determination of the nilpotent rank and the nilpotent depth for these maps, which vary based on whether the set size 

is even or odd. Additionally, this study surveys the relationship between these results and Stirling numbers, 

leveraging the Vagner Theorem and digraphic representations. We also examine stable quasi-idempotents, which 

correspond to specific digraphic paths and chains, providing further insights into the structure of partial 

transformation semigroups.  
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INTRODUCTION 

In semigroup theory, consideration of products of 

idempotent elements started from the work of J. M. 

Howie (Howie, 1966) who showed that, in the 

semigroup 𝒯𝑋(or 𝑇𝑋) of all full tranformations of a 

finite set 𝑋, every singular element (non-permutations) 

is a product of idempotents. That is if 𝐸 denotes the set 

of idempotents in 𝒯𝑋\𝒮𝑋 and 𝐸1 denotes the set of 

idempotents of defect one in 𝒯𝑋\𝒮𝑋 , then 𝒯𝑋\𝒮𝑋 =

 𝐸 =  𝐸1 . 

For the case of infinite set 𝑋, Howie (1966) gave a 

description of the subsemigroup generated by 

idempotents of the full transformation semigroup. This 

results were also considered by other authors in the 

semigroup of matrices and transformations of other 

mathematical structures (Erdos, 1967; Howie, 1978) 

who characterized the minimum defect one idempotent 

required to generate 𝒯𝑋\𝒮𝑋using technique from graph 

theory, and showed that the cardinality of such a 

minimum generating set is 
𝑛(𝑛−1)

2
, which is thus the 

idempotent rank of 𝒯𝑋\𝒮𝑋 . For each element 𝛼 ∈ 𝒯𝑋\𝒮𝑋  

the minimum number of idempotents in 𝐸1 required to 

express 𝛼, that is the 𝐸1-depth of 𝛼 was obtained by 

Howie as𝑔 𝛼 = 𝑛 + 𝑐 𝛼 − 𝑓(𝛼) (Howie, 1980).  

More works on transformation semigroups followed the 

works of Howie. These included the works of Garba 

(1990) on the semigroup of all partial transformations 

of {1,2, … , 𝑛}, Garba (1994a) and Garba (1994b) which 

extended the result on the semigroup of all partial one-

one order-preserving maps on 𝑋𝑛 = {1,2, … , 𝑛} and 

showed that the strictly partial transformations on the 

set 𝑋𝑛 = {1,2, … , 𝑛} that is nilpotent-generated if 𝑛 is 

even or odd has rank equal to 𝑛 + 2 respectively. Also, 

Yang (1998) considered the nilpotent ranks of the 

principal factors of certain semigroups of partial 

transformations. 

Madu (1999) presented that an element 𝛼 of an 

arbitratry semigroup 𝑆 is called nilpotent if 𝛼𝑚 = 0 (the 

zero mapping) for some integer 𝑚 ≥ 1. The orders 

 𝑋𝑛  = 𝑛,  𝑆𝑛  = 𝑛!,  𝑇𝑛  = 𝑛𝑛  ,  𝑃𝑛  = (𝑛 + 1)𝑛 , 

 𝐵𝑛  = 2𝑛2
. Madu (1999) also presented the Vagner 

Theorem: For each 𝛼in 𝑃𝑛 , define the transformation 𝛼∗ 

of 𝑋𝑛
0 = 𝑋𝑛 ∪ {0} by 𝑥𝛼∗ =  

𝑥𝛼  if 𝑥 ∈ 𝑑𝑜𝑚(𝛼)
0  if 𝑥 ∉ 𝑑𝑜𝑚(𝛼)

 . Then 

𝛼∗ belongs to the subsemigroup 𝑃𝑛
∗ of 𝑈𝑛  consisting of 

all those transformations of 𝑋𝑛
0 leaving 0 fixed. 

Conversely if 𝛽 ∈ 𝑃𝑛
∗, then its restriction to 𝑋𝑛  as 

𝛽|𝑋𝑛
= 𝛽 ∩ (𝑋𝑛 × 𝑋𝑛) is a partial transformation of 𝑋𝑛 . 

The domain of 𝛽|𝑋𝑛
 is the set of all of all 𝑥 in 𝑋𝑛  for 

which 𝑥𝛽 ≠ 0. Then the mapping 𝛼 → 𝛼∗ and 𝛽 →

𝛽|𝑋𝑛
 are mutually inverse isomorphisms of 𝑃𝑛  onto 𝑃𝑛

∗ 

and vice-versa since if 𝛼1, 𝛼2 ∈ 𝑃𝑛  and 𝑥 ∈ 𝑑𝑜𝑚 (𝛼1), 

then 𝑥𝛼1𝛼2 =  𝑥𝛼1 𝛼2 = (𝑥𝛼1)𝛼2
∗ (since 𝑥𝛼1 ∈

𝑑𝑜𝑚(𝛼2)) =  𝑥𝛼1
∗ 𝛼2

∗ = 𝑥𝛼1
∗𝛼2

∗ and so 𝛼 → 𝛼∗ is a 

Manuscript => Received: Feb., 2025; Accepted: March, 2025; Published: April, 2025            https://doi.org/10.62050/fjst2025.v9n1.511    

 

https://lafiascijournals.org.ng/index.php/fjst 
ISSN (print) 2449-0954 \ ISSN (online) 2636-4972 

https://lafiascijournals.org.ng/index.php/fjst
https://doi.org/10.62050/fjst2024.v8n1.279
https://lafiascijournals.org.ng/index.php/fjst


 

82 

 FULafia Journal of Science & Technology, Vol. 9, No. 1 

82 

Products of Nilpotents in Partial Transformation Semigroups using Digraphic Paths and Chains 

homomorphism. Suppose 𝛼1
∗ = 𝛼2

∗. Then 𝑥𝛼1
∗ =

𝑥𝛼2
∗ ⟹ 𝑥𝛼1 = 𝑥𝛼2 ⟹ 𝛼1 = 𝛼2. Also if 𝛼∗ ∈ 𝑃𝑛

∗; then 

by the very definition of 𝛼∗, there exists 𝛼 ∈ 𝑃𝑛  such 

that 𝛼 → 𝛼∗. Hence 𝑃𝑛 → 𝑃𝑛
∗ is an isomorphism. The 

semigroup 𝑈𝑛  is in effect 𝑇𝑛+1 and so the cardinal 

number  𝑈𝑛  = (𝑛 + 1)𝑛+1, and since 𝑃𝑛
∗ = {𝛼 ∈

𝑈𝑛 :  0𝛼 = 0}, we have  𝑃𝑛
∗ = (𝑛 + 1)𝑛  and so 

 𝑃𝑛  = (𝑛 + 1)𝑛 . The diameter of a graph Γ is the 

largest distance in Γ, that is 

𝑑 Γ = max⁡{𝑑 𝑣, 𝑤 : 𝑣, 𝑤 ∈ 𝑉(Γ)}. An element 

𝛼 ∈ 𝑇𝑛  is called quasi-nilpotent if and only if 𝛼𝑘  is a 

contant mapping for some positive integer 𝑘. An 

element 𝛼 ∈ 𝑆𝑖𝑛𝑔𝑛  is quasi-nilpotent if and only if 

𝑓𝑖𝑥 𝛼 = 1 and there is no non-empty subset 𝐴 of 𝑋𝑛  

(except 𝐹(𝛼)) such that 𝐴𝛼 = 𝐴. Every idempotent  

𝛼 ∈ 𝑆𝑖𝑛𝑔𝑛  is expressible as a product of two quasi-

nilpotents. Every element 𝛼 ∈ 𝑆𝑖𝑛𝑔𝑛  of height 𝑟 ≤ 𝑛 −

1 is expressible as a product of three quasi-nilpotents of 

the same height. The index of quasi-nilpotency of 𝛼 is 

the diameter of the digraph representing 𝛼. 

Imam et al. (2024) studied quasi-idempotent elements 

in the semigroup of partial order-preserving 

transformations and showed that semigroup 𝒫𝒪𝑛  is 

quasi-idempotent generated, and that the upper bound 

for quasi-idempotent rank of 𝒫𝒪𝑛  is  
5𝑛−4

2
  (where  𝑥  

denotes the least positive integer 𝑚 such that 𝑥 ≤ 𝑚 ≤

𝑥 + 1). That for any 𝛼 ∈ 𝒫𝒪𝑛  (the semigroup of partial 

order-preserving transformations), if 𝛼 = 𝛼2 then 𝛼 is 

called an idempotent; and if 𝛼 ≠ 𝛼2 = 𝛼4 then 𝛼 is 

called a quasi-idempotent.  

 

 

Given that 𝑄𝐸1 = {𝛽1, 𝛽2 , … , 𝛽𝑛−1, 𝛼1, 𝛼2 , … , 𝛼𝑛−1 , 𝜇2, 𝜇3, … , 𝜇𝑛−2, 𝛿2, 𝛿3, … , 𝛿𝑛−2},  

where 𝜇𝑖 =  
𝑖 𝑖 + 1

𝑖 − 1 𝑖
  for 𝑖 = 2, … , 𝑛 − 1, is decreasing and 𝛿𝑖 =  

𝑖 − 1 𝑖
𝑖 𝑖 + 1

  is increasing quasi-

idempotents. Also, 𝛽𝑖 =  
𝑖 + 1

𝑖
  is a decreasing quasi-idempotents and 𝛼𝑖 =  

𝑖 − 1
𝑖

  is increasing. Thus, 𝛼 =

𝛽𝑖𝛽𝑖+1 …𝛽𝑗−1 =  
𝑖 + 1

𝑖
  

𝑖 + 2
𝑖 + 1

 …  
𝑗

𝑗 − 1
  and 𝛼 = 𝛼𝑖−1𝛼𝑖−2 …𝛼𝑗+1 =  

𝑖 − 1
𝑖

  
𝑖 − 2
𝑖 − 1

 … 
𝑗

𝑗 + 1
 . 

 

MATERIALS AND METHODS 

Let 𝑑 𝛼∗ =  𝑋𝑛\𝑖𝑚(𝛼∗)  as defect of 𝛼∗ ∈ 𝑃𝑛 , and 

[𝑥1 , 𝑥2 , … , 𝑥𝑚 |𝑥𝑚 ] be an m-path (Ayik et al., 2005) and 

[𝑥1 , 𝑥2 , … , 𝑥𝑚 |0] be an m-chain. Then 𝛽∗ ∈ 𝑃𝑛  is said to 

be a 3-chain if 𝛽∗ = [𝑥1 , 𝑥2 , 𝑥3|0]. If 𝑥3 = 0, we get a 

2-chain [𝑥1 , 𝑥2|0] and if 𝑥2 = 𝑥3 = 0, then 𝛾 ∈ 𝑃𝑛  

becomes a one-chain 

𝛾 =  𝑥𝑖 0 =  
𝑥1   𝑥2 …   𝑥𝑖−1𝑥𝑖+1 …𝑥𝑛

𝑥1   𝑥2 …   𝑥𝑖−1𝑥𝑖+1 …𝑥𝑛
 . In this regard, 

𝑑 𝛾 = 0, ie 𝛾 has defect as 0; and 𝛼 ∈ 𝑃𝑛  is a product 

of 𝑛 one-chains as  𝑥1 0  𝑥2 0  𝑥3 0  𝑥4 0 … [𝑥𝑛 |0]. 

Since 𝛾2 =  𝑥1 0  𝑥1 0 =  𝑥1 0 = 𝛾, then 𝛾 is an 

idempotent having rank 𝑛 if and only if 𝛾 has defect 0. 

Since  𝑥1 0  𝑥2 0  𝑥3 0  𝑥4 0 …  𝑥𝑛  0 =

 
𝑥1𝑥2𝑥3 …𝑥𝑛

∅   ∅     ∅ …  ∅
 , then 𝑖𝑑𝑟𝑎𝑛𝑘 𝛾 = 𝑟𝑎𝑛𝑘(𝛾) and the 

nilpotent 𝛾 is idempotent generated as customary to the 

existing facts (Ayik et al., 2005). When 𝑛 −  𝑖𝑚 𝛼  =

1, then 𝛼∗ ∈ 𝑃𝑛  has the length of the products of its 

nilpotents as 
𝑛(𝑛−1)

2
 (Imam and Ibrahim, 2022), 

analogous to the idempotent rank of 𝛼 ∈ 𝑇𝑛  whence 

𝛼∗ =  𝑥1 , 𝑥2 0  𝑥3 , 𝑥4 0  𝑥5 , 𝑥6 0 … [𝑥𝑛−1, 𝑥𝑛 |0] (even 

if 𝛼 is not ordered). The 
𝑛(𝑛−1)

2
 is the choices of 2 out of 

𝑛-number of elements in 𝑋𝑛 . This corresponds to the 

Stirling number of the second kind 𝑆 𝑛, 𝑛 − 1 =
𝑛(𝑛−1)

2
 which also befits the Vagner Theorem. 

Analogous to the fact that not both [𝑥1 , 𝑥2|𝑥2] and 

 𝑥2 , 𝑥1|𝑥1  are assemble in the products, then the 

𝑛𝑖𝑙𝑟𝑎𝑛𝑘2,0 𝑃𝑛 =
𝑛(𝑛+1)

2
. 

Let 𝑔(𝛼∗) denotes the gravity of 𝛼∗ ∈ 𝑃𝑛 , then 𝑓 𝛼∗ =

|𝐹𝑖𝑥(𝛼∗)| is the cardinality of the set of acyclic, trivial 

and terminal orbits. For a 3-chain having a cycle of size 

𝑟, then 𝑔(𝛼∗) is maximized by increasing the number 

of 2-cycles and decreasing the number of fixed points. 

When 𝑟 is even, we have 
𝑟

2
 two-cycles and 

1

2
(𝑟 − 1) 

two-cycles when 𝑟 is odd. Thus, 𝑔 𝛼∗ = 𝑛∗ + 𝑐 𝛼∗ −

𝑓 𝛼∗ =  𝑛 + 1 + 𝑐 𝛼∗ − 𝑓 𝛼∗ = 𝑛 +
1

2
 𝑟 − 1 −

2. When 𝑟 = 𝑛 + 1, we have 𝑔 𝛼∗ =  𝑛 + 1 +
1

2
 𝑛 − 2 =

2 𝑛+1 +𝑛−4

2
=

3𝑛−2

2
. When 𝑛 is odd, 

𝑔 𝛼∗ =  𝑛 + 1 +
1

2
𝑛 − 2 =

3𝑛−2

2
.  

Let 𝑋𝑛
0 = 𝑋𝑛 ∪ {0} and let 𝑃𝑛  be the partial 

transformation semigroup on 𝑋𝑛
0. If  𝑥0 , 𝑥1 , … , 𝑥𝑚  ⊆

𝑋𝑛
0 (where 𝑥0 = 0) and 𝛼∗ ∈ 𝑃𝑛  is define by 𝑥𝑖𝛼

∗ =

𝑥𝑖+1 , 𝑥𝑚𝛼∗ = 𝑥𝑟(1 ≤ 𝑟 ≤ 𝑚) and 𝑥𝛼∗ = 𝑥(𝑥 ∈

𝑋𝑛\{𝑥1, 𝑥2 , … , 𝑥𝑚 }), then 𝛼∗ is called a path-cycle of 

length 𝑚 and period 𝑟, or simply, an (𝑚, 𝑟)-path-cycle, 

and is denoted (in a linear notation) by 𝛼∗ =

[𝑥1 , … , 𝑥𝑚 |𝑥𝑟 ]. If 𝑟 = 𝑚, 𝛼∗ is called an 𝑚-path to 𝑥𝑚  

or simply an 𝑚-path; if 𝑚 ≥ 2 and 𝑟 = 1, 𝛼∗ is called 

an 𝑚-cycle; if 𝑚 = 𝑟 = 1, 𝛼∗ is called a loop; if 

𝑚 = 𝑟 = 0, 𝛼∗ is called a terminal; if 𝑚 = 𝑟 = 2, 𝛼∗ is 

an idempotent of defect one; if 𝑚 ≥ 2 and 𝑟 ≠ 0 or 1, 
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𝛼∗ is said to be a proper path-cycle; if 𝑟 = 0, 𝛼∗ is an 

m-chain or a nilpotent of index 𝑚.  

Let  𝜉∗ = [𝑥1 , 𝑥2 , 𝑥3|𝑥0]  be an arbitrary 3-chain of 𝛼∗, 

𝜉∗ maps 𝑥1 to 𝑥2, 𝑥2 to 𝑥3, 𝑥3 to 𝑥0, and all other 

elements of 𝑋𝑛
0 identically. Then 𝜉∗  has a linear 

notation as 𝜉∗ =  𝑥1 , 𝑥2 , 𝑥3 0 =  
𝑥1 𝑥2

𝑥2 𝑥3

𝑥3

∅
  because 

of the Vagner Representation Theorem. We shall refer 

to 𝑥1 as the first entry, 𝑥2 as the middle entry (or second 

entry), 𝑥3 as the third entry and 𝑥0 as no entry of 𝜉∗.  

Let 𝛼∗ ∈ 𝑃𝑛 . The equivalence relation ~ = {(𝑥, 𝑦) ∈

𝑋𝑛
0 × 𝑋𝑛

0:  ∃𝑢, 𝑣 ≥ 0 𝑥𝛼∗𝑢 = 𝑦𝛼∗𝑣}, partitioned 𝑋𝑛
0 

into orbits Ω1 , Ω2 , … , Ω𝑘 . These orbits correspond to the 

connected components of the digraph associated to  𝛼∗ 

with vertex set 𝑋𝑛
0 in which there is a directed edge 

(𝑥, 𝑦) if and only if 𝑥𝛼∗ = 𝑦. Each orbit Ω has a kernel 

defined by 𝐾 Ω = {𝑥 ∈ Ω:  ∃r > 0 𝑥𝛼∗𝑟 = 𝑥}. 

Every orbit of 𝛼∗ falls into exactly one of these five 

categories and all the five cases can arise for a single 

𝜉∗ ∈ 𝑃𝑛 . Let 𝑐(𝛼∗) be the number of cyclic orbits of 𝛼∗ 

and 𝑓(𝛼∗) be the number of fixed points of 𝛼∗ which is 

equal to the sum of the number of terminal, trivial and 

acyclic orbits of 𝛼∗. The gravity of 𝛼∗ is define as    

𝑔 𝛼∗ = 𝑛∗ + 𝑐 𝛼∗ − 𝑓(𝛼∗), where 𝑛∗ = 𝑛 + 1.   

For each standard or acyclic orbit Ω of 𝛼∗ ∈ 𝑃𝑛  and 

each 𝑥 ∈ Ω\im(α), the sequence   𝑥, 𝑥𝛼∗, 𝑥𝛼∗2, 𝑥𝛼∗3, … 

eventually arrives in 𝐾(Ω), and remains there for all 

subsequent iterations. Denote the set of all distinct 

elements in this sequence by 𝑍(𝑥). Suppose that 

𝛼∗ ∈ 𝑃𝑛\𝑆𝑛  has 𝑠 standard orbits Ω1 , Ω2 , … , Ω𝑠 . For 

each 𝑗 = 1,2, … , 𝑠, let Ω𝑗 \𝑖𝑚 𝛼∗ = {𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑘𝑗 𝑗
}, 

where 𝑥1𝑗  is such that  

 𝑍 𝑥1𝑗   =  
𝑚𝑎𝑥1≤𝑖≤𝑘𝑗

{ 𝑍 𝑥𝑖𝑗   :  𝑍 𝑥𝑖𝑗   is even}

𝑚𝑎𝑥1≤𝑖≤𝑘𝑗
{ 𝑍 𝑥𝑖𝑗   :  𝑍 𝑥𝑖𝑗   is odd}

 . 

Then there exist 𝑚𝑗 ≥ 1 and 𝑟𝑗 ≥ 2 such that 𝐾 Ω𝑗  =

{𝑥1𝑗 𝛼
∗𝑚𝑗 , 𝑥1𝑗𝛼

∗𝑚 𝑗 +1, … , 𝑥1𝑗𝛼
∗𝑚 𝑗 +𝑟𝑗−1}, where 

𝑥1𝑗𝛼
∗𝑚𝑗 +𝑟𝑗 = 𝑥1𝑗𝛼

∗𝑚 𝑗 . Note that this definition of 

𝐾(Ω𝑗 ) is still valid for every 𝑥𝑖𝑗 , not only for 𝑥1𝑗 , and 

moreover, they are all the same.  

Let 

𝑍1 Ω𝑗  = 𝑍 𝑥1𝑗  =

{𝑥1𝑗 , 𝑥1𝑗𝛼
∗, … , 𝑥1𝑗𝛼

∗𝑚 𝑗 , 𝑥1𝑗 𝛼
∗𝑚 𝑗 +1, … , 𝑥1𝑗𝛼

∗𝑚 𝑗 +𝑟𝑗−1} 

and 𝑍𝑖 Ω𝑗  =  𝑥𝑖𝑗 , 𝑥𝑖𝑗 𝛼, … , 𝑥𝑖𝑗 𝛼
𝑝𝑖𝑗 −1  (2 ≤ 𝑖 ≤ 𝑘𝑗 )  

where 𝑥𝑖𝑗 𝛼
𝑝𝑖𝑗 ∈ (𝑍1(Ω𝑗 ) ∪ 𝑍2(Ω𝑗 ) ∪ 𝑍3(Ω𝑗 ) ∪ …∪

𝑍𝑖−1(Ω𝑗 )). Then {𝑍𝑖 Ω𝑗  : 1 ≤ 𝑖 ≤ 𝑘𝑗 } is a partition of 

Ω𝑗 .  

Suppose that 𝛼∗ ∈ 𝑃𝑛\𝑆𝑛  has acyclic or terminal orbit; 

let Φ be the union of all its acyclic orbits and let Ξ  be 

the union of all its terminal orbits, and denote the set 

{𝑥 ∈ Φ: xα∗ = 𝑥}by 𝐹𝑖𝑥(Φ). Let Φ\𝑖𝑚 𝛼∗ =

{𝑥1 , 𝑥2 , … , 𝑥𝑙} where 𝑥1 is such that  𝑍 𝑥1  =

 
𝑚𝑎𝑥1≤𝑖≤𝑘𝑗

{ 𝑍 𝑥𝑢  :  𝑍 𝑥𝑢  is even}

𝑚𝑎𝑥1≤𝑖≤𝑘𝑗
{ 𝑍 𝑥𝑢  :  𝑍 𝑥𝑖𝑗   is odd}

 . Then, for 

𝑢 = 1,2, … , 𝑙 define 𝑌𝑢 Φ = {𝑥𝑢 , 𝑥𝑢𝛼
∗, … , 𝑥𝑢𝛼

∗𝑞𝑢−1}, 

where 𝑥1𝛼
∗𝑞1 ∈ 𝐹𝑖𝑥(Φ) and 𝑥𝑢𝛼

∗𝑞𝑢 ∈  𝑌1 Φ ∪

𝑌2 Φ ∪ …∪ 𝑌𝑢−1 Φ ∪ 𝐹𝑖𝑥 Φ  (𝑢 = 2,3, … , 𝑙). Thus, 

{𝑌𝑢 Φ : 1 ≤ 𝑢 ≤ 𝑙} is a partition of Φ. We will be 

interested in the cardinalities of 𝑍𝑖(Ω𝑗 ) and 𝑌𝑢 Φ  

being odd or even. For this, we define indicator 

functions 𝑧𝑖𝑗  and 𝑦𝑢by 𝑧𝑖𝑗 =  
0  if 𝑍𝑖 Ω𝑗   is even

1 if 𝑍𝑖 Ω𝑗   is odd
 ,  

𝑦𝑢 =  
0 if  Yu Φ  is even

1 if  Yu Φ  is odd
  and 

𝑤𝑢 =  
0 if  Wu Ξ  is even

1 if  Wu Ξ  is odd
 .  For each 𝛼∗ ∈ 𝑃𝑛\𝑆𝑛 , we 

define the measure of 𝛼∗ by 

𝑚 𝛼∗ =  
𝑙 𝛼∗ − 𝑒 𝛼∗ if 𝑙 𝛼∗ > 𝑒(𝛼∗)

0 if 𝑙 𝛼∗ ≤ 𝑒(𝛼∗)
 , where 

𝑙 𝛼∗ =   𝑧𝑖𝑗 +  𝑦𝑢
𝑙
𝑢=1

𝑘𝑗

𝑖=1
𝑠
𝑗 =1 +  𝑤𝑢

𝑏
𝑣=1  and 𝑒(𝛼∗) 

denote the number of cyclic orbits of 𝛼∗ of even 

cardinality. 

 

RESULTS AND DISCUSSION 

An element 𝛼∗ ∈ 𝑃𝑛 : 𝑋𝑛 ∪  0 → 𝑋𝑛 ∪ {0} is said to be 

a nilpotent element if there exists a positive integer 

𝑚 such that 𝛼∗𝑚 = 0. Whenever 𝛼∗𝑖 = 0 ⟹ 𝑥𝛼∗𝑖 =

0 ⟹ 𝑥𝛼∗𝑖 = 0 = 𝑦𝛼∗𝑗
 which is the terminal orbit 

generated by the equivalence relationship 𝑥 ≡ 𝑦 

whenever 𝑥𝛼∗𝑖 = 𝑦𝛼∗𝑗
. Thus 𝑃𝑛  has one orbit ahead of 

𝑇𝑛 , the finite set of full transformations on 𝑋𝑛 =

{1,2, … , 𝑛}. Since every semigroup is embeddable in 

regular idempotent generated semigroups (Howie, 

1966) such as 𝑇𝑛 , then  𝑃𝑛  = (𝑛 + 1)𝑛  is embeddable 

in 𝑇𝑛+1 = (𝑛 + 1)(𝑛+1) defined on 𝑋𝑛 ∪ {0}. This is 

because there is a bijective morphism in the map 

𝜗: 𝑃𝑛 → 𝑇𝑛+1 defined by 𝜗 𝛼∗|𝑋𝑛
 = 𝛼|𝑋𝑛∪{0} since 

𝜗 𝛼∗|𝑋𝑛
∘ 𝛽∗|𝑋𝑛

 = 𝜗 (𝛼∗ ∘ 𝛽∗)|𝑋𝑛
  which by 

definition is equal to  𝛼 ∘ 𝛽 |𝑋𝑛∪ 0 = 𝛼|𝑋𝑛∪{0} ∘

𝛼|𝑋𝑛∪{0} = 𝜗 𝛼∗|𝑋𝑛
 ∘ 𝜗 𝛽∗|𝑋𝑛

 . The oneness and 

ontoness is by the fact that 𝜗 𝛼∗|𝑋𝑛
 = 𝜗 𝛽∗|𝑋𝑛

 ⟺

𝛼|𝑋𝑛∪{0} = 𝛼|𝑋𝑛∪{0} ⟺ 𝛼∗|𝑋𝑛
= 𝛽∗|𝑋𝑛

. The map 

𝜗: 𝑃𝑛 → 𝑇𝑛+1 is categorically 𝜗 𝛼∗|𝑋𝑛∪∅ = 𝛼|𝑋𝑛∪{0}, 

but merely represented by 𝜗 𝛼∗|𝑋𝑛
 = 𝛼|𝑋𝑛∪{0} since 

empty set is a subset of every set. A map 𝜗: 𝑃𝑛 → 𝑃𝑛
∗ ⊆

𝑇𝑛  is the Vagner Theorem usable in translating results 

of 𝑇𝑛  to 𝑃𝑛  through 𝑃𝑛
∗ (Saito, 1989).  
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Example 1: Consider the map 

𝛼∗ =  
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22
2  3  4  2  4  7  8  7  7  11  11   13  14   ∅   16  17  15  19  18  21  20  22

 ∈ 𝑃𝑛  with orbits  

   𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑:     Ω1 =  1,2,3,4,5 , Ω2 = {6,7,8,9} 

   𝑎𝑐𝑦𝑐𝑙𝑖𝑐:     Φ1 =  10,11  

   𝑐𝑦𝑐𝑙𝑖𝑐:     Θ1 =  15,16,17 , Θ2 =  18,19 , Θ3 = {20,21} 

   𝑡𝑟𝑖𝑣𝑖𝑎𝑙:     Ψ1 =  22  

   𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙:     Ξ1 =  12,13,14  

As shown in Figure 1 below: 

 

 
Figure 1: Orbits of 𝜶∗ ∈ 𝑷𝟐𝟐 

 

For this 𝛼∗, we have Φ = {10,11} and so 𝑍1 Ω1 =

{2,3,4,5} and 

𝑍2 Ω1 =  1 , 𝑍1 Ω2 =  6,7,8 , 𝑍2 Ω2 =

 9 , 𝑌1 Φ =  10 , 𝑊1 Ξ = {12,13,14}. Thus, 

𝑧11 = 0, 𝑧21 = 1, 𝑧12 = 1, 𝑧22 = 1, 𝑦1 = 0, 𝑤1 = 0, and 

so, 𝑙 𝛼∗ = 𝑧11 + 𝑧21 + 𝑧21 + 𝑧22 + 𝑦1 + 𝑤1 = 4, also 

𝑒 𝛼 = 2. Therefore the measure of 𝛼∗is 𝑚 𝛼∗ = 2.  

Theorem 3.1. Let 𝐸 be the set of all idempotents in 𝑃𝑛  

and 𝐸1 be the set of all idempotents of defect 1 in E. For 

𝑛 ≥ 3, each 𝛼∗ ∈ 𝐸1 is expressible as a product of 

nilpotents in 𝑃𝑛 . 

Proof. Each idempotent in 𝐸1 is of the form [𝑖, 𝑗|𝑗], 

with 𝑖, 𝑗 ∈ 𝑋𝑛  and 𝑖 ≠ 𝑗. Thus, since 𝑛 ≥ 3, there is a 

𝑘 = 0 ∈ 𝑋𝑛
0 such that  𝑖, 𝑗 𝑗 =  𝑖, 𝑗, 𝑘 0  𝑖, 𝑗, 𝑘 0 . 

Theorem 3.2. For 𝑛 ≥ 3, each 𝛼 ∈ 𝐸\𝐸1 is expressible 

as a product of 𝑔(𝛼∗) nilpotents of defect 1 in 𝑃𝑛 . 

Proof. Let 𝛼∗ ∈ 𝐸\𝐸1 and let 𝐴1, 𝐴2, … , 𝐴𝑟  be its non-

singleton blocks. Then, each of the blocks 𝐴𝑖(1 ≤ 𝑖 ≤

𝑟) is stationary. If  𝐴𝑖 ≥ 3 for some 𝑖, we assume 

without loss of generality that  𝐴1 ≥ 3. Let 𝐴𝑖\

{𝐴𝑖𝛼
∗} =  𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑎𝑖

 (1 ≤ 𝑖 ≤ 𝑟) and define 

products 𝜉𝑖(1 ≤ 𝑖 ≤ 𝑟) of nilpotents of 3-chains by  

 

𝜉1 =  𝑥11 , 𝑥12 , 𝐴1𝛼
∗ 0  𝑥11 , 𝑥13 , 𝐴1𝛼

∗ 0  𝑥11 , 𝑥14 , , 𝐴1𝛼
∗ 0 … [𝑥11 , 𝑥1𝑎1

, 𝐴1𝛼
∗|0] 𝑥11 , 𝑥12 , 𝐴1𝛼

∗ 0  and  𝜉𝑖 =

 𝑥11 , 𝑥𝑖2 , 𝐴𝑖𝛼
∗ 0  𝑥11 , 𝑥𝑖3 , 𝐴𝑖𝛼

∗ 0  𝑥11 , 𝑥14 , 𝐴𝑖𝛼
∗ 0 …  𝑥𝑖1 , 𝑥𝑖𝑎𝑖

, 𝐴𝑖𝛼
∗ 0 (2 ≤ 𝑖 ≤ 𝑟). Then it is easy to verify that 

𝛼∗ = 𝜉1𝜉2 …𝜉𝑟 . Also, each point in 𝐴𝑖\{𝐴𝑖𝛼
∗}(2 ≤ 𝑖 ≤ 𝑟) appeared exactly once as second entry of a 3-chain in 𝜉𝑖  

and each point in 𝐴1\{𝐴1𝛼
∗, 𝑥11 , 𝑥12 } appeared exactly once as a second entry of a 2-chain in 𝜉1. The point 𝑥12  

appeared exactly once as a second entry of the 3-chains in 𝜉1 while the point 𝑥11  did not appear anywhere as a 

second entry. Thus, the number of 3-chains used in the product 𝜉1𝜉2 …𝜉𝑟 is  |𝐴𝑖\{𝐴𝑖𝛼
∗}| = 𝑛 − 𝑓 𝛼∗ = 𝑔(𝛼∗)𝑟

𝑖=1 . 

If  𝐴𝑖 = 2 for all 𝑖, let 𝐴𝑖 =  𝑥𝑖 , 𝑥𝑖𝛼
∗ (1 ≤ 𝑖 ≤ 𝑟). Then 

𝛼∗ =  𝑥𝑟 , 𝑥1 , 𝑥1𝛼 0  𝑥𝑟 , 𝑥2 , 𝑥2𝛼 0 …  𝑥𝑟 , 𝑥𝑟−1, 𝑥𝑟−1𝛼 0 [𝑥𝑟 , 𝑥1 , 𝑥𝑟𝛼|0] and again, the number of 3-chains used is 

𝑛 − 𝑓 𝛼∗ = 𝑔(𝛼∗).  

 

Example 2: Consider the element  

𝑒 =  
 1,2,7,5  3,8,10,12  4,6,9, 11       {13,14,15,16}

2                         8                               11                              0
 = 𝜉1𝜉2𝜉3𝜉0 where 

𝜉1 =  1,5,2|2  1,7,2 2 [1,5,2|2] 

𝜉2 =  1,3,8 8  1,10,8 8 [1,12,8|8] 

𝜉3 =  1,4,11 11  1,6,11 11 [1,9,11|11] 

𝜉0 =  1,13, 14 0  1,14, 15 0 [1,15,16|0] 
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Theorem 3.3. For 𝑛 ≥ 3, each 𝛼∗ ∈ 𝑃𝑛\𝐸 is 

expressible as a product of  
1

2
(𝑔 𝛼 + 𝑚(𝛼))  3-chain 

nilpotents in 𝑃𝑛\𝑆𝑛 .  

Proof. Suppose that 𝛼∗ ∈ 𝑃𝑛\𝐸 has orbits as follows, 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑:   Ω1 , Ω2 , … , Ω𝑠 , 𝑎𝑐𝑦𝑐𝑙𝑖𝑐:   Φ1 , Φ2, … , Φ𝑎 , 

𝑐𝑦𝑐𝑙𝑖𝑐:   Θ1 , Θ2, … , Θ𝑐  , 𝑡𝑟𝑖𝑣𝑖𝑎𝑙:   Ψ1 , Ψ2, … , Ψ𝑡 , 

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙:   Ξ1 , Ξ2 , … , Ξ𝑏 . For each standard orbit Ω𝑗 , 

let Ω𝑗 \𝑖𝑚 𝛼 = {𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑘𝑗 𝑗
}; 𝐾 Ω𝑗  =

 𝑥1𝑗 𝛼
∗𝑚𝑗 , 𝑥1𝑗𝛼

∗𝑚 𝑗 +1, … , 𝑥1𝑗𝛼
∗𝑚 𝑗 +𝑟𝑗−1 , let 𝑍1 Ω𝑗  =

𝑍 𝑥1𝑗   

= {𝑥1𝑗 , 𝑥1𝑗𝛼
∗, … , 𝑥1𝑗 𝛼

∗𝑚 𝑗 , 𝑥1𝑗𝛼
∗𝑚 𝑗 +2, … , 𝑥1𝑗𝛼

∗𝑚 𝑗 +𝑟𝑗−1} 

and  let 𝑍𝑖 Ω𝑗  =  𝑥𝑖𝑗 , 𝑥𝑖𝑗 𝛼, … , 𝑥𝑖𝑗 𝛼
𝑝𝑖𝑗 −1  (2 ≤ 𝑖 ≤ 𝑘𝑗 ), 

where 𝑥𝑖𝑗 𝛼
𝑝𝑖𝑗 ∈ (𝑍1(Ω𝑗 ) ∪ 𝑍2(Ω𝑗 ) ∪ 𝑍3(Ω𝑗 ) ∪ …∪

𝑍𝑖−1(Ω𝑗 )). Let Φ = Φ1 ∪ Φ2 ∪ …∪ Φ𝑎 ; Φ\im α =

{x1 , x2, … , xl} and define 

𝑌𝑢 Φ = {𝑥𝑢 , 𝑥𝑢𝛼
∗, … , 𝑥𝑢𝛼

∗𝑞𝑢−1}, where 𝑥1𝛼
∗𝑞1 ∈

𝐹𝑖𝑥(Φ) and 𝑥𝑢𝛼
∗𝑞𝑢 ∈  𝑌1 Φ ∪ 𝑌2 Φ ∪ …∪

𝑌𝑢−1 Φ ∪ 𝐹𝑖𝑥 Φ  (𝑢 = 2,3, … , 𝑙). Let Θ𝑣 =

{𝑦𝑣 , 𝑦𝑣𝛼, … , 𝑦𝑣𝛼
𝑝𝑣−1} (where 𝑦𝑣𝛼

𝑝𝑣 = 𝑦𝑣). Then we 

consider six possible cases that may arise. 

Case 1 (0 = 𝑒 𝛼 = 𝑙(𝛼)). In this case each 𝑍𝑖 Ω𝑗  (𝑖 =

1,2, … , 𝑘𝑗 ) and each 𝑌𝑢 Φ (𝑢 = 1,2, … , 𝑙) is of even 

size; also, each Θ𝑣  is of odd size. Thus, corresponding 

to each 𝑍1 Ω𝑗  , 𝑍𝑖 Ω𝑗  (𝑖 = 2,3, … , 𝑘𝑗 ), 𝑌𝑢 Φ (𝑢 =

1,2, … , 𝑙), Θ𝑣(𝑣 = 1,2, … , 𝑐) and  Ξ𝑤 (𝑤 = 1,2, … , 𝑎); 

we define, respectively, products 𝜉1𝑗 , 𝜉𝑖𝑗 (𝑖 =

2,3, … , 𝑘𝑗 ), 𝜏𝑢(𝑢 = 1,2, … , 𝑙), 𝜂𝑣(𝑣 = 1,2, … , 𝑐) and 

𝜙𝑤(𝑤 = 1,2, … , 𝑏) of 3-chains by  

 

 

𝜉1𝑗 =  𝑥1𝑗 , 𝑥1𝑗𝛼
∗, 𝑥1𝑗𝛼

∗2|0  𝑥1𝑗𝛼
∗3, 𝑥1𝑗 𝛼

∗4, 𝑥1𝑗𝛼
∗5|0 …  𝑥1𝑗𝛼

∗𝑚 𝑗 +𝑟𝑗−2, 𝑥1𝑗𝛼
∗𝑚 𝑗 +𝑟𝑗−1, 𝑥1𝑗𝛼

∗𝑚 𝑗−1|0  

𝜉
𝑖𝑗 = 𝑥𝑖𝑗 ,𝑥𝑖𝑗 𝛼

∗,𝑥𝑖𝑗 𝛼
∗2|0  𝑥𝑖𝑗 𝛼

∗3 ,𝑥𝑖𝑗 𝛼
∗4 ,𝑥𝑖𝑗 𝛼

∗5|0 … 𝑥𝑖𝑗 𝛼
∗𝑚 𝑗 +𝑟𝑗 −2

,𝑥𝑖𝑗 𝛼
∗𝑚 𝑗 +𝑟𝑗 −1

,𝑥𝑖𝑗 𝛼
∗𝑚 𝑗−1

|0 
 

𝜏𝑢 =  𝑥𝑢 , 𝑥𝑢𝛼
∗, 𝑥𝑢𝛼

∗2|0  𝑥𝑢𝛼
∗3, 𝑥𝑢𝛼

∗4, 𝑥𝑢𝛼
∗5|0 …  𝑥𝑢𝛼

∗𝑞𝑢−2, 𝑥𝑢𝛼
∗𝑞𝑢−1, 𝑥𝑢𝛼

∗𝑞𝑢 |0  

𝜂𝑣 =  𝑦𝑣 , 𝑦𝑣𝛼
∗, 𝑦𝑣𝛼

∗2|0  𝑦𝑣𝛼
∗3, 𝑦𝑣𝛼

∗4, 𝑦𝑣𝛼
∗5|0 …  𝑦𝑣𝛼

∗𝑞𝑢−2, 𝑦𝑣𝛼
∗𝑞𝑣−1, 𝑦𝑣𝛼

∗𝑞𝑣 = 𝑦𝑣|0  

𝜙𝑤 =  𝑧𝑤 , 𝑧𝑤𝛼∗, 𝑧𝑤𝛼∗2|0  𝑧𝑤𝛼∗3, 𝑧𝑤𝛼∗4, 𝑧𝑤𝛼∗5|0 …  𝑧𝑤𝛼∗𝑞𝑤−2, 𝑧𝑤𝛼∗𝑞𝑤−1, 𝑦𝑤𝛼∗𝑞𝑤 |0  

 

For each 𝑗 = 1,2, … , 𝑠, let 𝛽𝑗 = 𝜉1𝑗 𝜉2𝑗 …𝜉𝑘𝑗 𝑗
, then each 

element x ∈ Ωj  appears exactly once either as a first 

entry or a second entry of a 3-chain in the product 𝛽𝑗 . 

Moreover, with the sole exception of 𝑥 = 𝑥𝑖𝑗 𝛼
∗𝑚 𝑗−1, an 

element 𝑥 ∈ Ω𝑗  appearing as the third entry never 

subsequently reappears as an upper or middle entry. 

Hence each 𝑥 ≠ 𝑥𝑖𝑗 𝛼
∗𝑚 𝑗 +𝑟𝑗−1 in Ω𝑗  is moved by 

exactly one of the 3-chains appearing in the product 𝛽𝑗  

and moreover, it is moved to 𝑥𝛼. The exceptional 

element  𝑥𝑖𝑗 𝛼
∗𝑚 𝑗 +𝑟𝑗−1 is moved to 𝑥𝑖𝑗 𝛼

∗𝑚 𝑗−1 by the 

first 3-chain in the product 𝜉1𝑗  and then is moved, by 

either [𝑥1𝑗𝛼
∗𝑚 𝑗−2 , 𝑥1𝑗 𝛼

∗𝑚 𝑗−1, 𝑥1𝑗𝛼
∗𝑚 𝑗 ] or 

[𝑥1𝑗𝛼
∗𝑚𝑗−1, 𝑥1𝑗𝛼

∗𝑚 𝑗 , 𝑥1𝑗𝛼
∗𝑚 𝑗 +1] to 𝑥1𝑗 𝛼

∗𝑚 𝑗 =

𝑥1𝑗𝛼
∗𝑚𝑗 +𝑟𝑗 . Thus, 𝑥𝛽𝑗 = 𝑥𝛼 for every 𝑥 ∈ Ω𝑗 , while 

𝑥𝛽𝑗 = 𝑥 for every 𝑥 ∈ 𝑋𝑛\Ω𝑗 . Since the orbits Ω𝑗 (1 ≤

𝑗 ≤ 𝑠) are pairwise disjoint, we have a product of 3-

chains such that 𝑥𝛽1𝛽2 …𝛽𝑠 =  
𝑥𝛼  if  𝑥 ∈  Ω𝑗

𝑠
𝑗=1

𝑥 if 𝑥 ∈ 𝑋𝑛\  Ω𝑗
𝑠
𝑗=1

 . 

Similarly, if 𝛾 = 𝜏1𝜏2 …𝜏𝑙  then each point 𝑥 ∈ Φ 

appears either as a first entry or second entry of a 3-

chain in the product 𝛾. Moreover, each 𝑥 ∈ Φ that 

appears as a third entry or second entry never 

subsequently reappears as a first or middle entry. Hence 

each 𝑥 ∈ Φ is moved to 𝑥𝛼∗ by exactly one of the 3-

chains appearing in the product 𝛾. Thus, 𝑥𝛾 = 𝑥𝛼 for 

each 𝑥 ∈ Φ  while 𝑥𝛾 = 𝑥 for each ∈ 𝑋𝑛\Φ.  

Also, if 𝛿 = 𝜂1𝜂2 …𝜂𝑐 , then, again, we can observe that 

the product 𝛿 is such that 𝑥𝛿 = 𝑥𝛼∗ for each  𝑥 ∈
 Θ𝑣

𝑐
𝑣=1 and 𝑥𝛿 = 𝑥 for each 𝑥 ∈ 𝑋𝑛\  Θ𝑣

𝑐
𝑣=1 . Hence, 

it follows that 𝛼 = 𝛽1𝛽2 …𝛽𝑠𝛾𝛿 a product of 3-chains 

in 𝑃𝑛\𝑆𝑛 .  Let us denote the number of 3-chains in the 

product 𝜉𝑖𝑗 , 𝜏𝑢  and 𝜂𝑣  by #(𝜉𝑖𝑗 ), #(𝜏𝑢) and #(𝜂𝑣) 

respectively (we shall also use similar notation in the 

sequel).  

Then, counting the number of points appearing at the 

first position of each product 𝜉𝑖𝑗 , 𝜏𝑢and 𝜂𝑣 , we have 

#(𝜉𝑖𝑗 ) =
1

2
 𝑍𝑖 Ω𝑗   (even), # 𝜏𝑢 =

1

2
|𝑌𝑢(Φ)| (even) 

and #(𝜂𝑣) =
1

2
( Θ𝑣 + 1). And so, #(𝛽𝑗 ) =

1

2
  𝑍𝑖 Ω𝑗   =

1

2
|Ω𝑗 |

𝑘𝑗

𝑖=1
, so that #(𝛽1𝛽2 …𝛽𝑠) =

1

2
 |Ω𝑗 |𝑠

𝑗=1 , #(𝛾) =
1

2
 |𝑌𝑢(Φ)|𝑙

𝑢=1  and #(𝛿) =

1

2
   Θ𝑣 + 1 =

1

2
   Θ𝑣 + 𝑐𝑐

𝑣=1  𝑐
𝑣=1 . Using these, 

while noting that 

  Ω𝑗  +   Θ𝑣 +   𝑌𝑢 Φ  = 𝑛 − (𝑎 + 𝑡)𝑙
𝑢=1

𝑐
𝑣=1

𝑠
𝑗=1 , 

we have # 𝛼∗ =
1

2
 𝑛 + 𝑐 −  𝑎 + 𝑡  =

1

2
 𝑛 +

𝑐𝛼∗−𝑓𝛼∗=𝑔(𝛼∗)2.  

The other cases 0 = 𝑙 𝛼∗ < 𝑒(𝛼∗), 0 = 𝑒 𝛼∗ <
𝑙(𝛼∗), 0 < 𝑙 𝛼∗ = 𝑒(𝛼∗), 0 < 𝑙 𝛼∗ < 𝑒(𝛼∗), 

0 < 𝑒 𝛼 < 𝑙(𝛼) followed analogously to the cases 

presented in Imam and Ibrahim (2022). However, the 

case  0 < 𝑙 𝛼∗ < 𝑒(𝛼∗)  yields a complete package as 

# 𝛼∗ =
1

2
 𝑛 −  𝑎 + 𝑡 +   𝑧𝑖𝑗

𝑘𝑗

𝑖=1
𝑠
𝑗 =1 +  𝑦𝑢

𝑙
𝑢=1 +

𝑐−𝑒=12𝑛+𝑐𝛼∗−𝑓𝛼∗+𝑙𝛼∗−𝑒𝛼∗=12(𝑔𝛼∗+𝑚(𝛼∗)). 

Hence in all cases, the length of the products of 

nilpotents is  
1

2
(𝑔 𝛼∗ + 𝑚(𝛼∗)) .  
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Example 3: Let  

 𝛼∗ =  
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22
2  3  4  2  4  7  8  7  7  11  11   13  14   ∅   16  17  15  19  18  21  20  22

 ∈ 𝑃𝑛  with orbits 

  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑:     Ω1 =  1,2,3,4,5 , Ω2 = {6,7,8,9},    𝑎𝑐𝑦𝑐𝑙𝑖𝑐:     Φ1 =  10,11 , 𝑐𝑦𝑐𝑙𝑖𝑐:     Θ1 =  15,16,17 , Θ2 =

 18,19 , Θ3 = {20,21},    𝑡𝑟𝑖𝑣𝑖𝑎𝑙:     Ψ1 =  22 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙:     Ξ1 =  12,13,14  we have Φ = {10,11} and so 

𝑍1 Ω1 = {2,3,4,5} and 𝑍2 Ω1 =  1 , 𝑍1 Ω2 =  6,7,8 , 𝑍2 Ω2 =  9 , 𝑌1 Φ =  10 , 𝑊1 Ξ = {12,13,14}. Thus, 

𝑧11 = 0, 𝑧21 = 1, 𝑧12 = 1, 𝑧22 = 1, 𝑦1 = 0, 𝑤1 = 0, and so, 𝑙 𝛼∗ = 𝑧11 + 𝑧21 + 𝑧21 + 𝑧22 + 𝑦1 + 𝑤1 = 4, also 

𝑒 𝛼∗ = 2. Therefore, the measure of 𝛼∗is 𝑚 𝛼∗ = 2, so that 𝛼∗ is expressed as a product of 𝑘 𝛼∗ =

 
1

2
(22 + 2) = 12 three-chains in 𝑃22 . This gives 𝛼 = 𝜉11𝜉12𝜉21𝜉22𝜏1𝜏2𝜂1𝜂2𝜂3, where 𝜉11 =  1, 2, 3|0  3, 4,

1|0 , 𝜉12 =  18, 5, 4|0 ,𝜉21 =  1, 6, 7|0  7, 8, 6|0 , 𝜉22 =  20, 9, 7|0 , 𝜏1 =  12, 13, 14|0 , 𝜏2 =

 12, 10, 11|0 , 𝜂1 =  1, 16, 17|0  17, 15, 1|0 , 𝜂2 =  5, 19, 18|0 , 𝜂3 =  9, 21, 20|0 . 

 

CONCLUSION 

Let 𝛼 ∈ 𝑆𝑖𝑛𝑔𝑛 = 𝑇𝑛\𝑆𝑛 = 𝐾(𝑛, 𝑛 − 1), where 

𝐾 𝑛, 𝑟 = {𝛼 ∈ 𝑇𝑛 :  𝑖𝑚 𝛼 ≤ 𝑟}. Then the idempotent 

depth of products of idempotents of defect 1 is 
𝑛(𝑛−1)

2
=

𝑆(𝑛, 𝑛 − 1), where 𝑆(𝑛, 𝑟) is the Stirling number of the 

second kind and 𝑇𝑛  is the semigroup of full 

transformations on 𝑋𝑛 = {1,2, … , 𝑛}. Since the set of 

idempotents of defect 𝑑 and of rank 𝑛 − 𝑑 written as 𝐸𝑑  

are generate-able by the idempotents of defect 1 given 

by 𝜀1 =  
𝑖
𝑗
 , and 𝛼 = 𝜀1𝜀2 …𝜀𝑘(𝛼), where 𝑘 𝛼 =

 
𝑔(𝛼)

𝑑(𝛼)
  as given by Saito (1989)  and 𝑘 𝛼 =

1

2
 𝑔 𝛼 + 𝑚(𝛼)  accorded by Imam and Ibrahim 

(2022)  who considered 3-path analogue of idempotents 

of defect 2; this work amalgamated the two depth 

expressions into 𝑘 𝛼 =  
𝑔 𝛼 +𝑚(𝛼)

𝑑(𝛼)
 ; where 𝑘(𝛼) is the 

depth of 𝛼, 𝑚(𝛼) is the measure of 𝛼 and 𝑑(𝛼) is the 

defect of 𝛼 expressible as 𝑑 𝛼 = 𝑛 − 𝑟(𝛼) and 𝑟(𝛼) is 

the rank of 𝛼.  

Thus, the idempotents of rank 1 have defect 𝑛 − 1. If 

𝑚 𝛼 = 0or 𝑚 𝛼 = 𝑑(𝛼), where 
𝑛

𝑟(𝛼)
 is a positive 

integer, then we retrieve back the Saito’s result. When 

𝑑 𝛼 = 2, we get back the case study of Imam and 

Ibrahim (2022). Since  𝑥  is the greatest integer 𝑚 less 

than or equal to 𝑥 and 𝑚(𝛼) is a variable, then 𝑘 𝛼 =

 
𝑔 𝛼 +𝑚(𝛼)

𝑑(𝛼)
 + 1 as expected has been handled by the 

variability of 𝑚(𝛼); where, in effect, 0 ≤ 𝑚 𝛼 ≤

𝑑 𝛼 (∀𝛼 ∈ 𝑆𝑖𝑛𝑔𝑛). For 𝛼 ∈ 𝑃𝑛\𝑆𝑛 , the 
𝑛(𝑛+1)

2
= 𝑆(𝑛 +

1, 𝑛) idempotents generate 𝑃𝑛 .  

Since  12 ,  
1
2
  and (1 2 …𝑛) generate 𝑇𝑛 , then 

 12 ,  
1
2
 ,  1 2 …𝑛 and [1,2, … , 𝑛|0] generate 𝑃𝑛  (for 

every 𝑛 a positive integer and 𝑃𝑛  the semigroup of 

partial maps, where 0 stands for empty map ∅ and 

[1,2, … , 𝑛|0] is a digraphic chain). In fact, 𝑃𝑛  is 

embeddable in the binary relation semigroup having the 

underlying set elements of the form  
𝑎
𝑏
 = (𝑎, 𝑏). Since 

𝑃𝑛  is a semigroup and every semigroup is embeddable 

in a regular idempotent generated 𝑟𝑖𝑔-semigroup such 

as 𝑇𝑛 , then 𝑃𝑛  is embeddable in 𝑇𝑛+1 which is apparent 

since (𝑛 + 1)𝑛 =  𝑃𝑛  ≤ (𝑛 + 1)(𝑛+1) = |𝑇𝑛+1|. This 

however attested the Vagner Representation of 𝑃𝑛  using 

𝑃𝑛
∗ ≅ 𝑈𝑛 ⊆ 𝑇𝑛  once again, and 𝑘 𝛼∗ =  

𝑔 𝛼∗ +𝑚(𝛼∗)

𝑑(𝛼∗)
  

whenever 𝛼∗ ∈ 𝑃𝑛 .  
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