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ABSTRACT 

In this work, the fluid flow and heat performance of Oldroyd-B fluids, through a capillary tube, were analyzed by 

means of a fractional model based on the Atangana-Baleanu time-fractional derivative. The fluid motion is 

generated by an arbitrary pressure gradient of a continuous function of the time. Analytical solutions for the 

velocity and temperature fields were obtained using the Laplace transform and the finite Hankel transform. In order 

to obtain the physical behavior regarding the velocity and temperature at the variation of the fractional parameters, 

material time, pulsation frequency effect and Prandtl number we carried out numerical calculations using MathCAD 

software and results were graphically presented. Numerical results obtained illustrated distinct behaviors of 

fractional order solutions when compared with classical model solutions. The fluid velocity and heat transfer 

performance in capillary tube can be controlled by regulating the fractional derivative parameter, relaxation, 

retardation time and Prandtl number which are very important in capillary devices. This fact can be an important in 

Biochip technology, thus making it possible to use this analysis technique extremely effective to control bioliquid 

samples of nanovolumes in capillary fluidic devices used for biological analysis and medical diagnosis. 
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INTRODUCTION 

The non-Newtonian fluids are famous due to their 

diverse classical properties. With complicated nature 

and distinct rheology, the interest of scientists is to 

explore more interesting features of such materials. The 

nature of non-Newtonian liquids is noticed to be 

entirely distinct as compared to viscous liquids. The 

non-Newtonian liquids play one of the major 

contributions in various manufacturing industries, 

chemical processing, and engineering. The real valuable 

examples associated with the non-Newtonian materials 

are observed like starch suspension, cosmetics, molten, 

medicine, paints, blood, etc. The characterization of 

such materials is usually presented in three types like 

rate type, integral, and differential fluid types (Guedri et 

at., 2022; Wang et al., 2022; Veltkamp et al., 2023). 

Physical models of non-Newtonian fluid flow and heat 

transfer in terms of fractional order derivatives are 

fascinating subject, especially in the fields of 

engineering, fluid mechanics and mathematical biology. 

These Non-Newtonian fluid models represent more 

realistic behavior as compared to the integer order 

derivatives in fluid dynamics. This is mainly because of 

the freedom one gets to choose either fractional order 

derivatives or integer order derivatives while 

formulating the flow problems (Sehra et al., 2023). 

Mathematical modeling of engineering, fluid dynamics 

and industrial problems usually result in the form of 

fractional partial differential equations. These models 

are controlled within their domain of validity by 

fractional order Partial Differential Equations PDEs. 

Therefore, it is imperative to be familiar with 

previously developed methods for solving fractional 

order Partial differential equations. 

The theoretical interest about the flow and heat transfer 

characteristics of pulsating flow in closed channels is of 

noteworthy interest in many areas of engineering and 

general applications. Examples that may be given in 

this concept include respiratory and circulatory systems 

(blood flow in the main arteries and capillaries), fluid 

movement in biological chips used in disease diagnosis, 

bioreactor systems, cleaning-in-place systems, 

thermoacoustic systems, cooling systems of nuclear 

reactors and internal combustion engines along with 

hydraulic and pneumatic control systems (Altunkaya et 

al., 2023). 

Anwar et al. (2022) studied the generalized time-

dependent magnetohydrodynamic (MHD) slip transport 

of an Oldroyd-B fluid near an oscillating upright plate. 

The plate was nested in a porous media under the action 

of ramped heating and nonlinear thermal radiation. 

Caputo–Fabrizio (CF) and Atangana-Baleanu (ABC) 

derivatives are utilized to constitute fractional partial 

differential equations that establish slip flow, shear 

stress, and heat transfer phenomena. The relations for 

skin friction and Nusselt number were evaluated in 

terms of velocity and temperature gradients to 

efficiently anticipate shear stress and rate of heat 

transfer at the solid–fluid interface. Consequently, their 

outcomes affirm that under the isothermal condition, a 

generalized Maxwell fluid performs the swiftest slip 

transport compared to other models. Inversely, a second 
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grade fluid specifies the highest velocity profile under 

ramped temperature case. Rathore (2023) have studied 

the Oldroyd-B model for biomedical purposes, which 

could impact medicine and health-related challenges. 

The comparison of Maxwell and Oldroyd-B hybrid 

nano models was deemed to analyze the viscoelastic 

nature of the blood. Altered governing equations were 

resolved by employing the Keller-Box scheme. 

Comparative results for Maxwell and Oldroyd-B 

models were obtained and shown graphically. The 

outcomes of their study show that the flow of GO-

Al2O3 suspended blood under the Oldroyd-B model 

gives an improved heat transmission rate compared 

with the Maxwell model. Also, drug resistance was low 

in Oldroyd-B flow.  Ali et al. (2024) have studied the 

combined influence of magnetic field, electro-osmotic 

flow (EOF), and pressure gradient on the unsteady 

magnetohydrodynamic fluid flow through a parallel 

microchannel. The Burger’s liquid model was used for 

the fractional partial differential equation, which allows 

to study the behavior of viscoelastic liquid velocity 

profile in the parallel microchannel.  

The Laplace transform (LT) in concert with the Fourier 

cosine transform were used to obtain the analytical 

solution of the velocity profile. Their results shows that 

the middle of the microchannel, fluid flow velocity 

increases with decrease in the delay time parameter 

value and increase in the Burger's parameter value, 

while the opposite trend is found for the velocity near to 

the middle of the microchannel. In addition, Burger's 

liquid is quite general, such that Oldroyd-B, Maxwell, 

and Newtonian liquids were readily obtained as limiting 

cases. Quran et al. (2024) studied the local skin friction, 

heating rate, and angular velocity inside boundary layer. 

Study's results were highlighted graphically the impact 

of micro polar fluid factors on the local skin friction, 

heating rate, and angular velocity curves were 

presented. The outcomes from the research show that 

the rising of Darcy parameter drives to decrease linearly 

both heating rate and local skin friction. Martín-Gil and 

Flores (2024) investigated the Oldroyd-B fluid flow 

over a permeable surface subjected to the effects of 

melting, slip effect, inclined magnetic field and 

chemical reactions. Numerical outcomes are graphically 

depicted by aid of velocity, concentration, temperature 

profiles for several model variables. Their results 

obtained indicated that Deborah number reduces the 

momentum boundary layer thickness whereas Deborah 

number enhances the adjacent momentum boundary 

layer. Zhao et al. (2024) analyzed the influence of 

Reynolds number on a velocity-vorticity correlation-

based skin-friction drag decomposition in 

incompressible turbulent channel flows. Liu et al. 

(2024) demonstrated the correlation between skin 

friction and enstrophy convection velocity in near-wall 

turbulence. Dadheech et al. (2024) studied the 

numerical simulation for MHD Oldroyd-B fluid flow 

with melting and slip effect in a capillary tube. 

Sidahmed (2024) present the numerical study for MHD 

Flow of an Oldroyd-B fluid over a stretching sheet in 

the presence of thermal radiation with Soret and Dufour 

Effects.  

Most of the previous studies dealt with non-Newtonian 

fluid flow and heat transfer over oscillating capillary 

are of integer order (Yin and Ma, 2013). The current 

study will extend the previous study using fractional 

order model of Atangana-Baleanu type to Model 

Oldroyd-B model. The aim of this paper is to derive 

and solved Atangana-Baleanu fluid flow and heat 

transfer over oscillating capillary tube. 

 

MODELING OF THE PROBLEM 

In this section, the constitutive equations governing the 

behaviour of Oldroyd B fluid based on Atangana-

Baleanu fractional derivative will be derived. Derived 

model equations will be solved using Laplace 

transformed combined with finite Hankel 

transformation.  

The Oldroyd-B fluid constitutive equation as in Rathore 

et al. (2023) and Sidahmed (2024) given by 

 𝜏 = −𝐩𝐈 + 𝐒    (1) 

𝐒 + ʎ1
D𝐒

Dt
= μ  1 + ʎ2

D

Dt
 𝐀1   (2) 

where ʎ1 is the relaxation time, ʎ2 is the retardation 

time,   is the Cauchy stress tensor, 𝐒 is the extra stress 

tensor, 𝜇 is the dynamic viscosity of the fluid and 𝐀1 is 

first Rivlin Ericksen, 𝐩 is pressure and 𝐈 is identity 

matrix.  

 

Atangana–Baleanu Fractional Differential Operator 

Let 𝑓 ∈ 𝐻1 𝑎, 𝑏 , 𝑏 > 𝑎, 𝛼 ∈  0, 1  then, Atangana-

Baleanu fractional derivative in Caputo and Fabrizo 

sense is given as  

𝐷𝑡
𝛼 𝑓 𝑡  =

B(α)

1−𝛼
 

𝑑𝑓

𝑑𝜏
𝐸𝛼  

−𝛼(𝑡−𝜏)𝛼

1−𝛼
 

𝑡

𝑏
𝑑𝜏𝐴𝐵𝐶    (3) 

whereB(α) has the same properties in Caputo and 

Fabrizo sense and 𝐸𝛼 =  
𝑧𝑘

Г(𝛼𝑘+1)

∞
𝑘=0   is a Mittag-

Leffler function.  

 

Using equation (3), equations (1) and (2) becomes:  

      𝜏 = −𝐩𝐈 + 𝐒    (4) 

 𝐒 + ʎ1
Dα𝐒

Dtα
= μ  1 + ʎ2

Dβ

Dtβ
 𝐀1    (5) 

where 𝛼 and β are the fractional parameter with 

0 ≤ 𝛼 ≤ 𝛽 ≤ 1. For β = 1. 
 

Momentum and Energy Equation 

The momentum and energy equations govern the 

dynamic behaviour of fluid motion and heat transfer 

performance (Fati et al., 2023; Dadheech et al., 2024) 

given by 

     𝜌  
𝜕𝐕

𝜕𝑡
+ 𝐕. ∇𝐕 = div𝛕 + 𝐅  (6) 

𝜌𝑐𝑝  
𝜕𝐓

∂t
+ 𝐕. ∇𝐓 = 𝑘div𝐓 + 𝛕. 𝐋   (7) 

where   
𝜕

𝜕𝑡
 is the material time derivative, ∇𝐕 are the 

surface forces, 𝐅 is the body forces, 𝑐𝑝  is the specific 

heat capacity  at constant pressure, 𝑘 is the thermal 

conductivity and 𝐓 is the temperature vector and  𝐕 is 

the velocity vector.  
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Formulation of the Problem 

Consider an incompressible, laminar, Oldroyd-B fluid 

pulsating flow in a capillary tube with a radius of 𝑟0 

driven by a pressure gradient that varies periodically 

with time as: 
𝜕𝑝

𝜕𝑧
= 𝐚𝐳 𝐴0 + 𝐴1 cos 𝜔𝑡    (8) 

where the pressure gradient contains a steady and a 

pulsating part, of amplitudes 𝐴0 and 𝐴1, respectively. 

The unit vector𝐚𝐳 is in the z-direction parallel to the 

flow, 𝜔 is the frequency of the pressure gradient and𝑡 is 

the time. Figure 1 shows the physical geometry of the 

problem.  

 
Figure 1: Physical Geometry of the problem 

 

Figure 1 is the physical geometry of an oscillating non-

Newtonian fluid flow in a round capillary tube with a 

radius of r0. For the oscillating flow shown below; (i) 

the flow is assumed to be laminar and fully developed; 

(ii) the flow is incompressible; (iii) the effect of surface 

tension is not considered; (iv) uniform heat flow is 

added at the boundary and (v) the driving force added 

to the fluid flow is an oscillating pressure gradient. 

Using equations (4), (5) and (8) in equations (6) and 

(7), we obtained momentum and energy equations of 

fractional Oldroyd-B fluid 

𝜌 1 + ʎ1 𝐷𝑡
𝛼𝐴𝐵𝐶  

𝜕𝑢

𝜕𝑡
= −  𝐴0 + 𝐴1 cos 𝜔𝑡    1 + ʎ1 𝐷𝑡

𝛼𝐴𝐵𝐶  

+ 

+𝜇  1 + ʎ2 𝐷𝑡
𝛽𝐴𝐵𝐶  

1

𝑟

𝜕

𝜕𝑟
 𝑟

𝜕𝑢

𝜕𝑟
    (9) 

𝜌𝑐𝑝ʎ2 𝐷𝑡
𝛼𝐴𝐵𝐶 𝑇 = 𝑘

1

𝑟

𝜕

𝜕𝑟
 𝑟

𝜕𝑇

𝜕𝑟
 + 𝜇  

𝜕𝑢

𝜕𝑟
  (10) 

 
The initial and boundary conditions corresponding to 

equations (9) and (10) are: 

𝑢 = 0 at 𝑡 = 0 for all 0 ≤ 𝑟 ≤ 𝑟0       (11) 
𝜕𝑢

𝜕𝑟
 and 

𝜕𝑇

𝜕𝑟
= 0 at 𝑟 = 0 for 𝑡 > 0       (12) 

𝑢 = 0 and 𝑇 = 𝑇𝑤  at 𝑟 = 𝑟0 for all 𝑡 > 0      (13) 

 

Consider the following dimensional variables  

𝑢∗ =
𝑢

𝑢𝑚
,    𝑡∗ =

𝑣𝑡

𝑟0
2 ,     𝑟∗ =

𝑟

𝑟0
,   𝜔∗ =

𝜔𝑟0
2

𝑣
,   ʎ1

∗ =
𝑣ʎ1

𝑟0
2 , 

ʎ2
∗ =

𝑣ʎ2

𝑟0
2  

             𝛾0 =
𝑟0

2

𝜇𝑢𝑠
, 𝑇∗ =

𝑇−𝑇𝑤

𝑇𝑤
,   (14) 

Using equation (14), equations (9) to (13) have the 

following non-dimensional form (after dropping the * 

notation)  

 1 + ʎ1 𝐷𝑡
𝛼𝐴𝐵𝐶  

𝜕𝑢

𝜕𝑡
= −𝛾0  𝐴0 + 𝐴1 cos 𝜔𝑡    1 +

ʎ1 𝐷𝑡
𝛼𝐴𝐵𝐶  +  1 + ʎ2 𝐷𝑡

𝛽𝐴𝐵𝐶  
1

𝑟

𝜕

𝜕𝑟
 𝑟

𝜕𝑢

𝜕𝑟
  (15) 

𝑃𝑟 ʎ2 𝐷𝑡
𝛼𝐴𝐵𝐶 𝑇 = 𝑘

1

𝑟

𝜕

𝜕𝑟
 𝑟

𝜕𝑇

𝜕𝑟
 + 𝐸𝑐  

𝜕𝑢

𝜕𝑟
   (16) 

𝑢 = 𝑇 = 0at𝑡 = 0 for all 0 ≤ 𝑟 ≤ 1 (17) 
𝜕𝑢

𝜕𝑟
 and 

𝜕𝑇

𝜕𝑟
= 0 at 𝑟 = 0 for 𝑡 > 0 (18) 

𝑢 = 0 and 𝑇 = 0 at 𝑟 = 1 for all 𝑡 > 0 (19) 

 

Analytical Solution of the Problem 

Integral transforms 

A general integral transform of the function 𝑢(𝑡) 

defined in the interval 𝑎 ≤ 𝑡 ≤ 𝑏 is denoted by; 

 χ 𝑢(𝑡) =  𝑆 𝑡, 𝑠 𝑢(𝑡)𝑑𝑡
𝑏

𝑎
 (20)    

where 𝑆 𝑡, 𝑠   is called the kernel of the transformation.  

The operator χ is called integral operator and 𝑠  is 

called the transformation variable. Integral transforms 

have proved to be very useful in solving difference type 

of problems in fluid dynamics.  

 

Laplace transformation 

The Laplace transformation of a function 𝑢(𝑡) is 

defined by  

Հ  𝑢(𝑡) = 𝑢  𝑠 =  𝑒−𝑠𝑡  𝑢(𝑡)𝑑𝑡
∞

0
,    𝑠 > 0      (21) 

while the inverse of Laplace transform   Հ−1 𝑢  𝑠     is 

given by  

Հ−1 𝑢  𝑠  = 𝑢 𝑡 =
1

2𝜋𝑖
 𝑒−𝑠𝑡𝑢  𝑠 𝑑𝑠,    𝑠 > 0
𝑐+𝑖∞

𝑐−𝑖∞
     (22) 

 

Laplace Transform of Atangana-Baleanu Fractional 

Derivatives 

Let 𝑢(𝑟, 𝑡) be a velocity field, the Atangana-Baleanu 

fractional derivative is defined by  

Dt
αu(r, t)ABC =

B α 

1−α
 Eα  −α

 t−τ α

1−α
 

∂u(r,τ)

∂τ
dτ

t

0
     (23) 

 

The Laplace transform of equation (63) is given by  

Հ  Dt
αu(r, t)ABC  =

𝑠𝛼Հ  𝑢(𝑟,𝑡) −𝑠𝛼−1𝑢(𝑟,0)

𝑠𝛼  1−𝛼 +𝛼
    (24) 

Where 𝑠 denotes the Laplace transform variable. 

 
Bessel transformation (finite Hankel transformation) 

The Bessel transformation or finite Hankel 

transformation is a generalization of the Fourier 

transformation  

Let 𝑢(𝑟) be a function defined for 0 ≤ 𝑟 ≤ 1 that is a 

continuous function. The Bessel transform is defined as  

  𝐻 𝑢(𝑟) = 𝑢  𝛾𝑛 =  𝑟 𝑢(𝑟)𝐽0 𝛾𝑛𝑟 𝑑𝑟
1

0
     (25)   

Where 𝐽0 is the zero-order Bessel function of the first 

kind and 𝛾𝑛 , 𝑛 = 1,2, …, are the positives of the 

equation 𝐽0 𝛾𝑛 = 0 

 

The inverse Bessel transform   𝐻−1 𝑢  𝛾𝑛     is given by  

𝐻−1 𝑢  𝛾𝑛  = 𝑢 𝑟 = 2  
𝑢  𝛾𝑛  

𝐽𝑛+1
2 (𝛾𝑛 )

𝐽0 𝛾𝑛𝑟 
∞
𝑛=1    (26) 

 

Solutions for fractional Oldroyd-B fluid flow and 

heat transfer 

Applying the Laplace transform (23) to equations (15)-

(19) and using the initial condition (17), we obtained 

the following transformed differential equations 
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𝑠𝑢  𝑟, 𝑠 +
ʎ1𝑠

𝛼+1𝑢  𝑟,𝑠 

𝑠𝛼  1−𝛼 +𝛼
− 𝐹  𝑠 − ʎ1

𝑠𝛼𝐹 𝑠 −𝑠𝛼−1𝑓(0)

𝑠𝛼  1−𝛼 +𝛼
+  1 +

ʎ2𝑠
𝛽

𝑠𝛽  1−𝛽 +𝛽
 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢  𝑟,𝑠 

𝜕𝑟
)   (27) 

𝑃𝑟ʎ1𝑠
𝛼𝑇  𝑟,𝑠 

𝑠𝛼  1−𝛼 +𝛼
=

1

𝑟

𝜕

𝜕𝑟
 𝑟

𝜕𝑇  𝑟,𝑠 

𝜕𝑟
 + 𝑄 (𝑟, 𝑠)          (28) 

𝜕𝑢  𝑟,𝑠 

𝜕𝑟
 and 

𝜕𝑇  𝑟,𝑠 

𝜕𝑟
= 0 at 𝑟 = 0 for 𝑠 > 0         (29) 

 𝑢  𝑟, 𝑠 = 0 and 𝑇  𝑟, 𝑠 = 0 at 𝑟 = 1 for all 𝑠 > 0        (30) 

 

Simplifying equations (27) and (28), we have 
 𝑠𝛼+1 1−𝛼 +𝑠𝛼+ʎ1𝑠

𝛼+1 

𝑠𝛼  1−𝛼 +𝛼
𝑢  𝑟, 𝑠 =

− 𝑠𝛼  1−𝛼 +𝛼 𝐹  𝑠 −ʎ1 𝑠
𝛼𝐹  𝑠 −𝑠𝛼−1𝑓(0) 

𝑠𝛼  1−𝛼 +𝛼
+  

𝑠𝛽  1−𝛽 +𝛽+ʎ2𝑠
𝛽

𝑠𝛽  1−𝛽 +𝛽
 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢  𝑟,𝑠 

𝜕𝑟
)       (31) 

𝑃𝑟ʎ1𝑠
𝛼𝑇  𝑟,𝑠 

𝑠𝛼  1−𝛼 +𝛼
−

1

𝑟

𝜕

𝜕𝑟
 𝑟

𝜕𝑇  𝑟,𝑠 

𝜕𝑟
 − 𝑄  𝑟, 𝑠 = 0                 (32) 

 

Next, applying the finite Hankel transform (25) and using equations (29) and (30), we obtain 

  𝑠𝛼+1 1−𝛼 +𝑠𝛼+ʎ1𝑠
𝛼+1  

𝑠𝛼  1−𝛼 +𝛼
𝑢  𝛾𝑛 , 𝑠 =

− 𝑠𝛼  1−𝛼 +𝛼 𝐹  𝑠 −ʎ1 𝑠
𝛼𝐹  𝑠 −𝑠𝛼−1𝑓(0) 

𝑠𝛼  1−𝛼 +𝛼

𝐽1(𝛾𝑛 )

𝛾𝑛
2 − 𝛾𝑛

2  
𝑠𝛽  1−𝛽 +𝛽+ʎ2𝑠

𝛽

𝑠𝛽  1−𝛽 +𝛽
 𝑢

                      
 𝛾𝑛 , 𝑠  (33) 

𝑃𝑟ʎ1𝑠
𝛼

𝑠𝛼  1−𝛼 +𝛼
𝑇  𝛾𝑛 , 𝑠 + 𝛾𝑛

2𝑇  𝛾𝑛 , 𝑠 − 𝑄  𝑟, 𝑠 
𝐽1(𝛾𝑛 )

𝛾𝑛
2 = 0     (34) 

 

Simplifying equations (33) and (34), we obtained 

𝑢  𝛾𝑛 , 𝑠 =
−  𝑠𝛽  1−𝛽 +𝛽  𝑠𝛼  1−𝛼 +𝛼  𝑠𝛼  1−𝛼 +𝛼 𝐹  𝑠 −ʎ1 𝑠

𝛼𝐹  𝑠 −𝑠𝛼−1𝑓(0)  

  𝑠𝛽  1−𝛽 +𝛽  𝑠𝛼+1 1−𝛼 +𝑠𝛼+ʎ1𝑠
𝛼+1  +𝛾𝑛

2  𝑠𝛽  1−𝛽 +𝛽+ʎ2𝑠
𝛽   𝑠𝛼  1−𝛼 +𝛼  

𝐽1(𝛾𝑛 )

𝛾𝑛
2  (35) 

𝑇  𝛾𝑛 , 𝑠 =  
𝑠𝛼  1−𝛼 +𝛼

𝑃𝑟ʎ2𝑠
𝛼+𝛾𝑛

2 𝑠𝛼  1−𝛼 +𝛼 
 𝑄  𝑟, 𝑠 

𝐽1(𝛾𝑛 )

𝛾𝑛
2      (36) 

 

Using the formulae (26), the inverse finite Hankel transforms for equations (35) and (36) are respectively given by: 

𝑢  𝑟, 𝑠 = 2  
𝐽0 𝛾𝑛  𝑟 

𝐽0
2 𝛾𝑛   

∞

𝑛=1
 

 
−  𝑠𝛽  1−𝛽 +𝛽  𝑠𝛼  1−𝛼 +𝛼  𝑠𝛼  1−𝛼 +𝛼 𝐹  𝑠 −ʎ1 𝑠

𝛼𝐹  𝑠 −𝑠𝛼−1𝑓(0)  

  𝑠𝛽  1−𝛽 +𝛽  𝑠𝛼+1 1−𝛼 +𝑠𝛼+ʎ1𝑠
𝛼+1  +𝛾𝑛

2  𝑠𝛽  1−𝛽 +𝛽+ʎ2𝑠
𝛽   𝑠𝛼  1−𝛼 +𝛼  

 
𝐽1(𝛾𝑛 )

𝛾𝑛
2   (37) 

𝑇  𝑟, 𝑠 = 2  
𝐽0(𝛾𝑛  𝑟)

𝐽0
2(𝛾𝑛  )

∞
𝑛=1   

𝑠𝛼  1−𝛼 +𝛼

𝑃𝑟ʎ1𝑠
𝛼+𝛾𝑛

2 𝑠𝛼  1−𝛼 +𝛼 
 𝑄  𝑟, 𝑠  

𝐽1(𝛾𝑛 )

𝛾𝑛
2     (38) 

 

Using the Stehfest's algorithm, the inverse Laplace transforms of equations (37) and (38) are given by  

𝑢 𝑟, 𝑡 =
ln 2

𝑡
  −1 𝑗+𝑝  

𝑖𝑝 (2𝑖)!

𝑖! 𝑝−𝑖 ! 𝑖−1 ! 𝑗−1 !(2𝑖−𝑗 )!

𝑀𝑖𝑛 (𝑗 ,𝑝)

𝑖= 
𝑗+1

2
 

2𝑝
𝑗=1 𝑢  

𝑗 ln 2

𝑡
    (39)  

𝑇 𝑟, 𝑡 =
ln 2

𝑡
  −1 𝑗+𝑝  

𝑖𝑝 (2𝑖)!

𝑖! 𝑝−𝑖 ! 𝑖−1 ! 𝑗−1 !(2𝑖−𝑗 )!

𝑀𝑖𝑛 (𝑗 ,𝑝)

𝑖= 
𝑗+1

2
 

2𝑝
𝑗=1 𝑇  

𝑗 ln 2

𝑡
    (40) 

 

Equations (39) and (40) are the analytical solutions of 

Oldroyd-B fluid flow and heat transfer using Atangana-

Baleanu fractional derivatives. 

Skin Friction and Nusselt Number 

Skin Friction (Surface Drag Force) 

Skin friction is the resistive force exerted by a fluid on 

the surface of a body moving through it, or when fluid 

flows over a stationary body. It is primarily caused by 

the viscous effects within the boundary layer close to 

the surface of the object. Boundary Layer: A thin region 

near the surface where the velocity of the fluid changes 

from zero (due to the no-slip condition at the surface) to 

the free-stream velocity. Shear Stress(𝝉𝒘): The force 

per unit area acting parallel to the surface, which is a 

result of viscous forces in the boundary layer.  

      𝜏𝑤 = 𝜇  
1+ʎ2 𝐷𝑡

𝛽𝐴𝐵𝐶

1+ʎ1 𝐷𝑡
𝛼𝐴𝐵𝐶   

𝜕𝑢

𝜕𝑟
 
𝑟=0

  (41) 

 

Skin Friction Coefficient: The skin friction coefficient 

𝐶𝑓  is a dimensionless quantity that quantifies the ratio 

of the skin friction to the dynamic pressure of the fluid 

(Martín-Gil and Flores, 2024): 

   𝐶𝑓 =
𝜏𝑤

1

2
𝜌𝑢𝑚

2
    (42) 

 

Nusselt Number (Heat Transfer Rate) 

The Nusselt number (𝑁𝑢 ) is a dimensionless number 

that quantifies the rate of convective heat transfer 

relative to the rate of conductive heat transfer within a 

fluid. It describes the enhancement of heat transfer 

through a fluid flow compared to pure conduction.  

In the case of constant wall heat flux, the Nusselt 

number is generally defined as Zhao et al. (2024). 

  𝑁𝑢 =
2𝑞𝑤

 𝑇𝑤−𝑇𝑏 𝑘
  (43) 

considering equation  (14)  (after dropping the * 

notation)  

  𝑁𝑢 =
2

 𝑇𝑤−𝑇𝑏 
  (44) 



 

 
 

Atangana-Baleanu Fractional Modeling of Oldroyd-B Fluid Flow and Heat Transfer in a Capillary Tube 

 FULafia Journal of Science & Technology, Vol. 9, No. 1 

38 

where   𝑇𝑏  is the instantaneous bulk temperature at the 

wall defined by  

   𝑇𝑏 =
 𝑇 𝑢

1
0 𝑑𝑟

 𝑢𝑑𝑟
1

0

   (45) 

Substituting equation (45) into equation (44) and using 

the boundary at  𝑇𝑤 =
11

24
 , we obtain 

  𝑁𝑢 =
2

11

24
−
 𝑇 𝑢

1
0 𝑑𝑟

 𝑢𝑑𝑟
1
0

  (46) 

 

RESULT AND DISCUSSION 

In order to obtain the physical interpretation of results 

regarding the behavior of the velocity and temperature 

at the variation of the fractional Oldroyd-B fluid, we 

carried out numerical simulation using MathCAD 

software and results were graphically presented in 

Figures 2 – 13. The result validation of the current work 

with previous work in the literature was presented in 

Figure 14. 

Figures 2 and 3 are plotted, in order to present the 

evolution in time of the Maxwell fluid velocity for 

various fractional parameter 𝛼. The velocity diagrams 

have been sketched for small and large values time t, in 

Figures 2 and 3, respectively. The case of ordinary fluid 

corresponding to 𝛼 = 1 was, also, studied. It is 

observed from Figures 2 and 3, that in both cases, the 

influence of the fractional parameters on the fluid 

velocity is significant for the small values of the time t 

(t=0.1, 0.3, 0.5) in the particular case. Also, we must be 

noted that for higher values of the time t (t=0.7, 0.9, 

1.0), the velocity variation with ordinary fluid is 

significantly higher than for fractional fluid.  

 

 
Figure 2: Velocity profile for small values of time t 

(t=0.1, 0.3, 0.5) and ʎ𝟏 = 𝟎. 𝟓   with difference 

fractional parameter case of Maxwell fluid  
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Figure 3: Velocity profile for large values of time t 

(t=0.7, 0.9, 1) and ʎ𝟏 = 𝟎. 𝟓 with difference 

fractional parameter case of Maxwell fluid 

 

 

 
Figure 4: Velocity profile for small values of time t 

(t=0.1, 0.3, 0.5) ʎ𝟏 = 𝟎. 𝟓, ʎ𝟐 = 𝟎. 𝟔  with difference 

fractional parameter case of Oldroyd-B fluid  

 

 



 

 
 

Atangana-Baleanu Fractional Modeling of Oldroyd-B Fluid Flow and Heat Transfer in a Capillary Tube 

 FULafia Journal of Science & Technology, Vol. 9, No. 1 

40 

 
Figure 5: Velocity profile for large values of time t 

(t=0.7, 0.9, 1) and ʎ𝟏 = 𝟎. 𝟓, ʎ𝟐 = 𝟎. 𝟔   with 

difference fractional parameter case of Oldroyd-B 

fluid 

 

 

Figures 4 and 5 are drawn in order to study the behavior 

of velocity with the radial coordinate r. In these figures 

we have considered the fractional parameters 𝛼 and  𝛽 

in the relation 𝛼 ≤ 𝛽for Figure and 𝛼 ≥ 𝛽 for Figure 5. 

It is seen from these figures that there are values of time 

t and of the fractional parameters for which, the 

fractional fluid moves faster/slower than the ordinary 

fluid. The influence of fractional parameters on the 

fluid velocity is significant for small values of the time 

t. The reverse flow can produced at the motion 

beginning. The influence of memory effects, which are 

described by the time-fractional derivatives, is 

significantly in the case when the fractional parameters 

satisfy condition 𝛼 < 𝛽 and for small values of the time 

t. 

Figures 6 and 7 illustrates the influence of pulsation 

frequency on the velocity profiles for fractional fluid 

𝛼 ≤ 𝛽, 𝛼 ≥ 𝛽 and ordinary fluid (𝛼 = 1 and  𝛽 = 1). It 

can be found that the fluid velocity depends on the 

oscillating frequency and the fractional order form of 

the fluid. When the oscillating frequency increases, the 

amplitude of the wave form of the velocity profiles 

decreases, which is consistent with the case of ordinary 

fluids. 

 

 
Figure 6: Velocity profile for different pulsation 

frequency (𝝎 =
𝝅

𝟓
,
𝝅

𝟐
, 𝝅) and ʎ𝟏 = 𝟎. 𝟓, ʎ𝟐 =

𝟎. 𝟔   with difference fractional parameter 𝜶  and 𝜷 

fixed; case of Oldroyd-B fluid 
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Figure 7: Velocity profile for different pulsation 

frequency (𝝎 =
𝝅

𝟓
,
𝝅

𝟐
, 𝝅) and ʎ𝟏 = 𝟎. 𝟓, ʎ𝟐 =

𝟎. 𝟔   with difference fractional parameter 𝜷 case of 

Oldroyd-B fluid 

 

 

 
Figure 8: Temperature profile for small values of 

time t (t=0.1, 0.3, and 0.5) and ʎ𝟏 = 𝟎. 𝟓, ʎ𝟐 =
𝟎   with difference fractional parameter case of 

Maxwell fluid 
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Figure 9: Temperature profile for large values of 

time t (t=0.7, 0.9, and 1.2) and ʎ𝟏 = 𝟎. 𝟓, ʎ𝟐 =
𝟎   with difference fractional parameter case of 

Maxwell fluid 

 

 

Figures 8 and 9 were plotted in order to study the 

influence of fractional parameters 𝛼 

on the Maxwell fluid temperature distribution. The 

temperature distribution diagrams have been sketched 

for small values of time in Figure 8 and large values 

time in Figure 9.  It is observed from Figures 8 and 9 

that, the variation of the fractional parameters leads to 

decreasing of the fluid temperature as time progress. As 

the time progress, the temperature for the ordinary fluid 

is higher than fractional fluids.   

 

Figures 10 and 11 illustrates the influence of fractional 

parameters 𝛼 and 𝛽 on the Oldroyd B  fluid temperature 

distribution for fractional fluid 𝛼 ≤ 𝛽, 𝛼 ≥ 𝛽 and 

ordinary fluid (𝛼 = 1 and  𝛽 = 1). This behavior is 

similar to Maxwell except that higher temperature 

distribution was observed.  

 

 
Figure 10: Temperature profile for small values of 

time t (t=0.1, 0.3, and 0.5) and ʎ𝟏 = 𝟎. 𝟓, ʎ𝟐 =
𝟎. 𝟔   with difference fractional parameter case of 

Oldroyd-B fluid 
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Figure 11: Temperature profile for large  values of 

time t (t=0.7, 0.9, and 1.2) and ʎ𝟏 = 𝟎. 𝟓, ʎ𝟐 =
𝟎. 𝟔   with difference fractional parameter case of 

Oldroyd-B fluid 

 

 

 
Figure 12: Temperature profile for different Prandtl 

number (Pr=7, 10, 15) and ʎ𝟏 = 𝟎. 𝟓, ʎ𝟐 = 𝟎. 𝟔   with 

difference fractional parameter 𝜶  and 𝜷 fixed. case 

of Oldroyd-B fluid 
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Figure 13: Temperature profile for different Prandtl 

number (Pr=7, 10, 15) and ʎ𝟏 = 𝟎. 𝟓, ʎ𝟐 = 𝟎. 𝟔   with 

difference fractional parameter 𝜷  and 𝜶 fixed. case 

of Oldroyd-B fluid 

 

 

The influences of Prandtl number together with the 

fractional parameters on the temperature field were 

presented in Figures 12 and 13.  In these figures we 

have considered the fractional parameters 𝛼 and  𝛽 in 

the relation 𝛼 ≤ 𝛽 for Figure 12 and 𝛼 ≥ 𝛽 for Figure 

13. It noted that the fluid temperature is decreasing with 

the Prandtl number, but in Figure 13 𝛼 ≥ 𝛽, the 

temperature presents a slight increase. 

 

 

 

 
Figure 14: Comparison of results of velocity and 

Temperature distribution with the result of Fati et 

al. (2023) and present work 

 

 

In Figure 14, the classical model solved by Fati et al. 

(2023) was compared with the fractional model (present 

work). It is clear from Figure 14, the result generated by 

Fati et al. (2023) for both velocity and temperature have 

the same agreement with present solution.  

The important physical quantities, the local shear stress 

and local rate of heat transfer are respectively measured 

in terms of the local skin friction, 𝐶𝑓   and the local 

Nusselt number, Nu and the numerical is as shown in 

Table 1 and 2. 

 

Table 1: Numerical result of skin friction and 

Nusselt number the fractional parameters 𝜶 and  𝜷 

in the relation 𝜶 ≥ 𝜷 

𝜶 𝜷 ʎ𝟏 ʎ𝟐 𝑪𝒇 𝑵𝒖 

0.7 0.1 0.5 0.6 0.038841173217 1.1630 

0.7 0.3 0.5 0.6 0.029843226489 1.45985 

0.7 0.5 0.5 0.6 0.051369207540 0.43155 

0.7 0.7 0.5 0.6 0.047224953021 0.7327 

1 1 0.5 0.6 0.047110432048 0.8620 
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Table 2: Numerical result of skin friction and 

Nusselt number the fractional parameters 𝜶 and  𝜷 

in the relation 𝜶 ≤ 𝜷 

𝜶 𝜷 ʎ𝟏 ʎ𝟐 𝑪𝒇 𝑵𝒖 

0.1 0.7 0.5 0.6 0.029843226489 1.45985 

0.3 0.7 0.5 0.6 0.029477381285 2.02355 

0.5 0.7 0.5 0.6 0.029212566879 2.49065 

0.7 0.7 0.5 0.6 0.028803221349 3.36493 

1 1 0.5 0.6 0.028257391637 5.12438 

 

 

Table 1 shows the skin friction 𝐶𝑓  and the Nusselt 

number, 𝑁𝑢 for different values of the fractional 

parameters 𝛼 and  𝛽 in the relation 𝛼 ≥ 𝛽.  The table 

shows that the skin friction 𝐶𝑓  decreases with increase 

in the fractional parameter 𝛽 for the fractional Oldroyd-

B model between 𝛽 = 0.1, 0.3 and the  Nusselt number, 

𝑁𝑢 increases with increase in the fractional parameter 

in the same values of  𝛽. But, for 𝛽 = 0.5, 0.7, the skin 

friction Cf decreases while the Nusselt number,  𝑁𝑢 

increases. Also the skin friction is minimal for 𝛽=1 

which is a classical model of Oldroyd-B model and the 

Nusselt number  𝑁𝑢 is also greatest for the classical 

Oldroyd-B model. Because of the minimal value of the 

skin friction 𝐶𝑓  and the greatest heat transfer rate, the 

classical model of Oldroyd-B model are better working 

compared to the fractional Oldroyd-B model in flow 

and heat transfer. 

Table 2 shows the skin friction 𝐶𝑓  and the local Nusselt 

number, 𝑁𝑢 with the different values of the fractional 

parameters 𝛼 and  𝛽 in the relation 𝛼 ≤ 𝛽. It is 

observed that, the skin friction decreases with increase 

in the heat generation coefficient and the Nusselt 

number increases with increase in the heat generation 

parameter. Thus, high value of the heat generation 

parameter enhances high heat transfer. It also noted that 

for the classical model 𝛼 = 𝛽 = 1, the fluid 

temperature observed lower of skin friction and higher 

value of Nusselt number.  

 

CONCLUSION 
Modeling and analytical solution of Oldroyd-B 

Atangana-Baleanu fractional time-fractional derivative 

in capillary tube were obtained for fluid velocity and 

temperature distribution by finite Hankel and Laplace 

transform methods. There are some main finds 

summarized in the follows: 

(a) the physical obtained from simulation have 

illustrated the distinct behaviors of fractional 

order solutions when compared with classical 

model solutions. 

(b) the fluid behavior of Maxwell fractional model 

have shown distinct behavior as compared to the 

Oldroyd-B fractional solution.    

(c) the performance of fluid flow and heat transfer in 

capillary tube can be controlled by regulating the 

fractional order parameter. 

(d) the influence of fractional  fluid velocity is 

significant for the small values of the time, while 

for temperature distribution is significant for 

large values of time.   

(e) the fluid velocity with fractional derivative 

moves faster/slower than the ordinary fluid. 

(f) for large values of the Prandtl number, it is 

observed that the fluid temperature is decreasing, 

but in the middle of channel, the temperature 

presents a slight increase. 

(g) the fluid temperature can be controlled by 

regulating Prandtl number and fractional 

parameters 𝛼 and 𝛽 
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