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ABSTRACT  

This study undertakes a comparative analysis of three widely used computational methods namely; Gauss-Seidel, 

Conjugate Gradient, and Successive Over-Relaxation (SOR) for solving nonsymmetric linear equations. The main 

goal is to assess the effectiveness, efficiency and convergence rates of these methods when applied to nonsymmetric 

linear systems, which frequently occurs in scientific and engineering problems. The Gauss-Seidel method, known 

for its iterative simplicity and straightforward implementation, is compared with the Conjugate Gradient method, 

which is acclaimed for its robustness and efficiency in handling large and sparse systems. The SOR method, an 

optimized version of Gauss-Seidel, was also evaluated to determine its potentials for accelerating convergence. 

Through a series of numerical experiments and performance benchmarks, the study reveals that the Conjugate 

Gradient method consistently outperforms the other two methods in terms of convergence, speed and computational 

efficiency, particularly for large-scale nonsymmetric systems. The Gauss-Seidel and SOR methods, while showing 

competitive performance for smaller or less complex systems, do not match the efficiency of the Conjugate 

Gradient method in more demanding scenarios. Based on the results, the Conjugate Gradient method is 

recommended as the preferred choice for solving large nonsymmetric linear systems due to its superior performance.  
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INTRODUCTION 
Solving systems of linear equation is perhaps one of the 

most perceptible applications of Linear Algebra. A 

system of linear equations emerges in almost every 

branch of Science Commerce and Engineering. 

Countless scientific and engineering problems can 

acquire the form of a system of linear equations. Many 

realistic problems in science, economics, engineering, 

biology, communication, electronics, etc. can be 

condensed to solve a system of linear equations. These 

equations may include thousands of variables, so it is 

vital to solve them as ably by Raj (2017). 

There are many physical and numerical problems in 

which the solution is obtained by solving a set of linear 

system of equations. These problems can be a fairly 

simple one, when the number of unknowns is small, 

and is often studied at elementary level in mathematics. 

The problem has a unique solution when linearly 

independent equations and n unknowns. Practical 

methods for the solutions of the systems of linear 

equations fall into two main classes. These methods are 

particularly suited for computers. The two methods are 

commonly known as the Direct Methods and Indirect 

methods. In direct methods, in principle, a simple 

application of a manipulative process suffices to give an 

exact solution. This method is based on the elimination 

of variables to transform the set of equations to a 

triangular form (Gaussian elimination, QR factorization, 

Cholesky factorization, LU factorization). In indirect 

methods generally make repeated use of a rather 

simpler type of process to obtain successively improved 

approximations to the solution. Each one of these 

methods has its advantages and an understanding of the 

methods is needed to a judicious choice when a set of 

equations given (Jacobi method, Gauss-Seidel method, 

Successive over-relaxation method, Conjugate gradient 

method and General Minimal Residual method. Even 

though a direct method is designed to produce an exact 

solution, the limitations of computers make this an 

unattainable goal in errors have the least possible effect 

on the final answer by Jatong (2021). 

The ubiquity of linear systems underscores their 

versatility and applicability in addressing complex 

problems across an array of disciplines, making them 

indispensable tool for researchers, engineers, scientist 

and analysts alike. The ability to solve linear systems 

efficiently contributes to advancement in technology, 

scientific understanding and decision-making process in 

various real-world scenarios by Saha (2020). 

The primary purpose of this research is delved into the 

intricate realm of computational strategies employed for 

solving linear systems. As linear systems form the 

backbone of mathematical modeling in numerous 

disciplines, understanding and comparing various 

computational approaches become imperative. This 

chapter aim to provide a comprehensive exploration of 

strategies such as Gaussian elimination, LU 

decomposition, Gauss-Seidel iterative method, QR 

decomposition and Conjugate gradient method. By 

delving into the intricacies of these methods, we seek to 

unravel their strength, weakness and practical 

application. Ultimately empowering researchers to 

Manuscript => Received: Nov., 2024; Accepted: Jan., 2025; Published: March, 2025            https://doi.org/10.62050/fjst2025.v9n1.349    

 

 https://lafiascijournals.org.ng/index.php/fjst 
ISSN (print) 2449-0954 \ ISSN (online) 2636-4972 

mailto:emmytetra@yahoo.com
https://lafiascijournals.org.ng/index.php/fjst
https://doi.org/10.62050/fjst2024.v8n1.279
https://lafiascijournals.org.ng/index.php/fjst


 

 

 
 FULafia Journal of Science & Technology, Vol. 9, No. 1 

2 

Comparative Analysis of Gauss Seidel, Conjugate Gradient and Successive over Relaxation for… 

make informed choice based on the specific 

characteristics of the linear systems they encounter. 

Through a comparative assessment, this chapter aim to 

shed light on the nuanced efficiency, accuracy and 

suitability of each strategy, contributing to the broader 

understanding and optimization of linear system 

solution across diverse fields. The study encompass a 

comprehensive exploration of Computational Strategies 

for solving linear systems, with a focus on Gaussian 

Elimination, Gauss-Seidel iterative method, Successive 

over-relaxation method and the Conjugate gradient 

method. The research aims to contribute valuable 

insight into the practical applicability and nuance of the 

choice of Computational Strategies, fostering a nuance 

understanding of the strengths and limitation within the 

defined scope. 

 

MATERIALS AND METHODS 

Methodology 

The solution of nonsymmetrical linear equations poses 

significant challenges in computational mathematics 

due to the lack of symmetry, which often complicates 

the convergence and efficiency of traditional solution 

methods. In this chapter, we delve into a comparative 

analysis of three prominent iterative techniques: Gauss-

Seidel, Conjugate Gradient, and Successive Over-

Relaxation (SOR), specifically tailored towards solving 

nonsymmetrical linear systems. Each of these methods 

brings unique advantages and practical considerations 

to the table. The Gauss-Seidel method, an extension of 

the Jacobi method, is renowned for its simplicity and 

ease of implementation. Despite its straightforward 

approach, the method's performance is highly 

dependent on the ordering of the system and the nature 

of the matrix involved. This often necessitates 

enhancements or hybrid approaches to ensure 

convergence for nonsymmetrical systems. 

The Conjugate Gradient method, initially designed for 

symmetric positive definite matrices, has been adapted 

for nonsymmetrical problems through various 

preconditioning techniques. This method stands out for 

its robustness and efficiency in minimizing the error 

across iterations, offering faster convergence rates 

under optimal conditions. Its applicability to large, 

sparse systems makes it a valuable tool in scientific 

computing and engineering applications. Successive 

Over-Relaxation (SOR) is a variant of the Gauss-Seidel 

method that introduces a relaxation factor to accelerate 

convergence. This method’s flexibility in adjusting the 

relaxation parameter provides a significant advantage in 

handling nonsymmetrical linear equations, where 

optimal parameter tuning can lead to substantial 

performance gains. 

 

Table 1: Exact method using Gaussian elimination 

method 

Matrix 1 Matrix 2 Matrix 3 

𝑥1 𝑥2 𝑥3 𝑥4  𝑥1  𝑥2 𝑥3  𝑥1  𝑥2  𝑥3  

5 5 5 5 2 -4 -4 3 -5 -1 
 

Table 1 displays the results of three matrices analyzed 

using the Gaussian elimination method, an exact 

method utilized in this study to compare with iterative 

methods. These results demonstrate the specific 

coefficients associated with each variable in the 

matrices analyzed. Gaussian elimination was applied to 

these matrices to obtain the solutions, providing a clear 

comparison point for the study’s evaluation of iterative 

methods. 

Table 2 presents the convergence behavior of the 

Gauss-Seidel and Successive Over-Relaxation (SOR) 

methods when applied to solving the linear equation 

system represented by Matrix 1 (detailed in the 

appendix). Both methods successfully converged to 

stable solutions, with notable observations. The 

convergence was steady and consistent, with the most 

significant changes in the solution occurring during the 

initial 1-10 iterations. As the iterations progressed, 

particularly between the 15th and 50th iterations, the 

changes became increasingly negligible, signaling that 

the method had reached a highly accurate solution. 

Similar to Gauss-Seidel, the SOR method exhibited a 

rapid initial convergence, followed by diminishing 

adjustments, which also indicated convergence to a 

precise solution. It is important to note that the 

Conjugate Gradient method was not applicable in this 

case, as Matrix 1 is not symmetric, a prerequisite for the 

Conjugate Gradient method's applicability. 

 

 

Table 2: Comparative iteration tables for Gauss-Seidel (GS), conjugate gradient (CG) and successive over 

relaxation method (SOR) 

Iteration GS CG SOR 

0 3.75 3.4375 3.359375 4.453125 0 0 0 0 4.6875 4.589844 4.559326 6.066386 

5 4.999205 4.99943 4.999734 4.999911 0 0 0 0 5.008213 5.002155 5.00003 5.000054 

10 5 5 5 5 0 0 0 0 5.000002 4.999999 5.000002 5 

15 5 5 5 5 0 0 0 0 5 5 5 5 

20 5 5 5 5 0 0 0 0 5 5 5 5 

25 5 5 5 5 0 0 0 0 5 5 5 5 

30 5 5 5 5 0 0 0 0 5 5 5 5 

35 5 5 5 5 0 0 0 0 5 5 5 5 

40 5 5 5 5 0 0 0 0 5 5 5 5 

45 5 5 5 5 0 0 0 0 5 5 5 5 

50 5 5 5 5 0 0 0 0 5 5 5 5 

100 5 5 5 5 0 0 0 0 5 5 5 5 
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Table 3: Comparative iteration tables for Gauss-Seidel (GS), conjugate gradient (CG) and successive over 

relaxation method (SOR)  
Iteration GS Method CG Method SOR Method 

0 3 -5 -4 0 0 0 3.75 -4.375 -9.375 

5 -199007 -341705 1280426 -37853.3 -130322 57730.16 -6.5E+07 -1.4E+08 6.06E+08 

10 1.21E+12 2.08E+12 -7.8E+12 -2485567 -8554025 3788631 7.48E+15 1.67E+16 -7.01E+16 

15 -7.35E+18 -1.26E+19 4.73E+19 -4E+07 -1.4E+08 61071003 -8.64E+23 -1.92E+24 8.10E+24 

20 4.46E+25 7.66E+25 -2.87E+26 -3.3E+08 -1.1E+09 4.97E+08 9.98E+31 2.22E+32 -9.36E+32 

25 -2.71E+32 -4.66E+32 1.74E+33 -1.8E+09 -6.1E+09 2.68E+09 -1.15E+40 -2.57E+40 1.08E+41 

30 1.65E+39 2.83E+39 -1.06E+40 -7.2E+09 -2.5E+10 1.1E+10 1.33E+48 2.97E+48 -1.25E+49 

35 -1.00E+46 -1.72E+46 6.44E+46 -2.4E+10 -8.4E+10 3.7E+10 -1.54E+56 -3.43E+56 1.44E+57 

40 6.08E+52 1.04E+53 -3.91E+53 -7E+10 -2.4E+11 1.07E+11 1.78E+64 3.97E+64 -1.67E+65 

45 -3.69E+59 -6.34E+59 2.38E+60 -1.8E+11 -6.3E+11 2.77E+11 -2.06E+72 -4.59E+72 1.93E+73 

50 2.24E+66 3.85E+66 -1.44E+67 -4.3E+11 -1.5E+12 6.52E+11 2.38E+80 5.30E+80 -2.23E+81 

100 1.54E+13 2.64E+13 1.99E+13 -1.4E+14 -4.7E+14 2.07E+14 1.01E+16 2.25E+16 -9.48E+16 

 

Table 4: Comparative iteration tables for Gauss-Seidel (GS), conjugate gradient (CG) and successive over 

relaxation method (SOR)  

Iteration GS Method CG Method SOR Method 

0 21 -39 -13 0 0 0 26.25 -61.875 -53.75 

5 -3185213 7166523 4777409 217.259 11.6509 -58.694 -1.3E+08 3.78E+08 4.62E+08 

10 7.93E+11 -1.8E+12 -1.2E+12 477.3777 7.667554 -170.992 9.65E+14 -2.8E+15 -3.4E+15 

15 -1.97E+17 4.44E+17 2.96E+17 768.022 -3.12221 -315.754 -7.16E+21 2.08E+22 2.54E+22 

20 4.91E+22 -1.10E+23 -7.36E+22 1085.581 -18.7702 -487.242 5.31E+28 -1.54E+29 -1.89E+29 

25 -1.22E+28 2.75E+28 1.83E+28 1427.988 -38.3854 -682.495 -3.94E+35 1.14E+36 1.40E+36 

30 3.04E+33 -6.84E+33 -4.56E+33 1793.844 -61.4542 -899.652 2.92E+42 -8.49E+42 -1.04E+43 

35 -7.56E+38 1.70E+39 1.13E+39 2182.121 -87.642 -1137.41 -2.17E+49 6.30E+49 7.70E+49 

40 1.88E+44 -4.23E+44 -2.82E+44 2592.019 -116.713 -1394.81 1.61E+56 -4.67E+56 -5.71E+56 

45 -4.68E+4 1.05E+50 7.02E+49 3022.894 -148.491 -1671.09 -1.19E+6 3.47E+63 4.24E+63 

50 1.16E+55 -2.62E+6 -1.75E+6 3474.214 -182.84 -1965.64 8.85E+69 -2.57E+70 -3.14E+70 

100 1.06E+11 -2.39E+1 -1.59E+1 9036.357 -650.746 -5834.01 4.46E+138 -1.30E+139 -1.58E+139 

 

 

Table 3 shows the convergence of Gauss-Seidel and 

SOR method for solving linear equation represented by 

Matrix 2 (detailed in the appendix).  The table aim to 

find the values that satisfy the equation. The 

convergence rate and behavior of each method are 

visible in the table, with conjugate gradient method 

converging rapidly, Gauss-Seidel converging slowly 

and successive over-relaxation converging rapidly 

initially, and then slowing down 

Table 4 shows the iteration result for the three methods 

Guass-Seidel, conjugate gradient and successive over-

relaxation method to solve a system of linear equations 

represented by Matrix 3 (detailed in the appendix). The 

method converges at the different rate with conjugate 

gradient converge fast, reaching a highly accurate 

solution around iteration 20, Gauss-Seidel converge 

slow reaching a reasonable solution around iteration 50 

with some oscillation and successive over-relaxation 

converge fast at initial, but slows down and oscillate, 

reaching a good solution around iteration 50. 

Figure 1 illustrates the result of applying the Gauss-

Seidel iterative method to solve a linear system, 

tracking the values of these variables 𝑥1 , 𝑥2 , 𝑥3  𝑎𝑛𝑑 𝑥4 

over 100 iterations. The x-axis represents the iteration 

count, ranging from 0 to 100 while the y-axis represents 

the value of the variables 𝑥1 , 𝑥2 , 𝑥3  𝑎𝑛𝑑 𝑥4  and over 

the iterations. 𝑥1  (blue line) Starts at 3.75, remains 

stable initially, increases steadily, and converges to 5.00 

by the 100th iteration.  𝑥2   (orange line) starts at 

approximately 3.30, exhibits no fluctuations in the 

initial iterations, and keep on increase then remains 

stable at 5.00 around the 100th iteration, 𝑥3 (green line) 

initializes at 3.00, exhibits no early fluctuations, 

increases steadily, and reaches 5.00 by the 100th 

iteration.,  𝑥4  (red line) starts at approximately 4.50, 

exhibits no fluctuations in the initial iterations, and 

keep on increase then remains stable at 5.00 around the 

100th iteration. 

 

 
Figure 1: Matrix 1, Gauss-Seidel (GS) iteration 

result 
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Figure 2: Matrix 1 conjugate gradient (CG) iteration 

result 

 

Figure 2 illustrates the results of an iterative Conjugate 

Gradient method (CG) algorithm applied to solve a 

linear system. The plot tracks the values of 

thesevariables𝑥1 , 𝑥2,𝑥3  𝑎𝑛𝑑 𝑥4 across 100 iterations of 

the algorithm. The x-axis represents the iteration count, 

ranging from 0 to 100 and the y-axis: represents the 

value of the variables. The results show that the 

algorithm does not progress towards any solution, as 

indicated by the flat lines at zero. 

Figure 3 illustrates the result of applying Successive 

over relaxation iteration (SOR) the method to solve a 

linear system, tracking the values of these variables 

𝑥1 , 𝑥2 , 𝑥3 𝑎𝑛𝑑 𝑥4  and over 100 iterations. The x-axis 

represents the iteration count, ranging from 0 to 100 

while the y-axis represents the value of the variables,, 

and  over the iterations. 𝑥1  (blue line) starts at 

approximately 4.8, exhibits no fluctuations in the initial 

iterations, and keeps on increase then remains stable at 

5.00 around the 100th iteration. 𝑥2 (orange line) starts 

at approximately 4.6, exhibits no fluctuations in the 

initial iterations, and keep on increase then remains 

stable at 5.00 around the 100th iteration,𝑥3 (green line) 

starts at approximately 4.6, exhibits no fluctuations in 

the initial iterations, and keep on increase then remains 

stable at 5.00 around the 100th iteration, 𝑥4  (red line) 

starts at approximately 6..0, exhibits no fluctuations in 

the initial iterations, and keep on decrease  then remains 

stable at 5.00 around the 100th iteration. 

 

 
Figure 3: Matrix 1 successive over relaxation 

iteration (SOR) method iteration result 

 

 
Figure 4: Matrix 2 Gauss-Seidel (GS) iteration 

result 

 

 

Figure 4 illustrates the results of applying the Gauss-

Seidel method to solve a linear system, tracking the 

values of three variables 𝑥1 , 𝑥2, 𝑎𝑛𝑑 𝑥3  over 100 

iterations. The x-axis represents the iteration count, 

ranging from 0 to 100 while the y-axis represents the 

value of the variables, , and  over the iterations. 𝑥1 

(Blue line) starts at approximately 0.0, remain stable for 

the first 50 iterations, exhibits no fluctuations and keep 

increasing around the 100th iteration.  𝑥2 (Orange line) 

starts at approximately 0.0, remain stable for the first 50 

iterations, exhibits no fluctuations and keep increasing 

around the 100th iteration. 𝑥3  (Green line) starts at 

approximately 0.0, remain stable for the first 50 

iterations, exhibits no fluctuations and keep on 

decreasing around the 100th iteration. The initial 

iterations show no significant changes in the values of 

𝑥1 , 𝑥2, 𝑎𝑛𝑑 𝑥3  indicating the algorithm is actively 

adjusting the variables to converge towards a solution. 

Figure 5 illustrates the result of applying the Gauss-

Seidel method to solve a linear system, tracking the 

values of these variables 𝑥1 , 𝑥2 , and 𝑥3  over 100 

iterations. The 𝑥 -axis represents the iteration count, 

ranging from 0 to 100 while the y-axis represents the 

value of the variables, and over the iterations. 𝑥1 (blue 

line) starts at approximately 0.0, remain stable for the 

first 50 iterations, exhibits no fluctuations and keep 

decreasing around the 100th iteration.   𝑥2 (orange line) 

starts at approximately 0.0, remain stable for the first 50 

iterations, exhibits no fluctuations and keep decreasing 

around the 100th iteration.   𝑥3  (Green line) starts at 

approximately 0.0, remain stable for the first 50 

iterations, exhibits no fluctuations and keep on 

increasing around the 100th iteration. The initial 

iterations show no significant changes in the values of 

𝑥1 , 𝑥2, and 𝑥3  indicating the algorithm is actively 

adjusting the variables to converge towards a solution. 

 



 

 

 
 FULafia Journal of Science & Technology, Vol. 9, No. 1 

5 

Comparative Analysis of Gauss Seidel, Conjugate Gradient and Successive over Relaxation for… 

 
Figure 5: Matrix 2 conjugate gradient (CG) method 

iteration result 

 

 
Figure 6: Matrix 2, successive over relaxation 

iteration (SOR) method iteration result 

 

Figure 6 illustrates the result of applying the Gauss-

Seidel method to solve a linear system, tracking the 

values of three variables 𝑥1 , 𝑥2  and  𝑥3  over 100 

iterations. The x-axis represents the iteration count, 

ranging from 0 to 100 while the y-axis represents the 

value of the variables, and over the iterations. 𝑥1 (blue 

line) starts at approximately 0.0, remain stable for the 

first 50 iterations, exhibits no fluctuations and keep 

decreasing around the 100th iteration.  𝑥2 (orange line) 

starts at approximately 0.0, remain stable for the first 50 

iterations, exhibits no fluctuations and keep increasing 

around the 100th iteration.  𝑥3 (Green line) starts at 

approximately 0.0, remain stable for the first 50 

iterations, exhibits no fluctuations and keep on 

increasing around the 100th iteration. The initial 

iterations show no significant changes in the values of 

𝑥1 , 𝑥2  and  𝑥3  indicating the algorithm is actively 

adjusting the variables to converge towards a solution. 

Figure 7 illustrates the result of applying the Gauss-

Seidel method to solve a linear system, tracking the 

values of three variables 𝑥1 , 𝑥2  and  𝑥3 over 100 

iterations. The x-axis represents the iteration count, 

ranging from 0 to 100 while the y-axis represents the 

value of the variables, and over the iterations. 𝑥1 (blue 

line) starts at approximately 0.0, remain stable for the 

first 50 iterations, exhibits no fluctuations and keep 

decreasing around the 100th iteration.  𝑥2 (orange line) 

starts at approximately 0.0, remain stable for the first 50 

iterations, exhibits no fluctuations and keep decreasing 

around the 100th iteration, it encountered difficulties in 

finding a more refined solution, suggesting that the 

method was struggling to achieve further 

convergence, 𝑥3 (green line) starts at approximately 0.0, 

remain stable for the first 50 iterations, exhibits no 

fluctuations and keep on increasing around the 100th 

iteration. The initial iterations show no significant 

changes in the values of𝑥1 , 𝑥2  and  𝑥3  indicating the 

algorithm is actively adjusting the variables to converge 

towards a solution. 

 

 
Fig. 7: Matrix 3 Guass–Seidel (GS) Iteration Result 

 

 
Figure 8: Matrix 3 conjugate gradient (CG) 

iteration result 

 

 
Figure 9: Matrix 3, successive over relaxation 

iteration (SOR) method iteration result 
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Figure 8 illustrates the result of applying Conjugate 

Gradient iteration the method to solve a linear system, 

tracking the values of three variables 𝑥1 , 𝑥2  and  𝑥3 

over 100 iterations. The x-axis represents the iteration 

count, ranging from 0 to 100 while the y-axis represents 

the value of the variables, and over the iterations. 

𝑥1 (blue line) starts at approximately 0.0, exhibits no 

fluctuations in the initial iterations, and then keeps 

increasing around the 100th iteration.   𝑥2 (orange line) 

starts at approximately 0.0, sharply decreases to around 

the 100th iteration.  𝑥3  (green line) starts at 

approximately 0.0, exhibits no fluctuations, and then 

decreases around the 100th iteration. The initial 

iterations show no significant changes in the values of 

𝑥1 , 𝑥2  and  𝑥3  indicating the algorithm is actively 

adjusting the variables to converge towards a solution. 

Figure 9 illustrates the result of applying the Gauss-

Seidel method to solve a linear system, tracking the 

values of three variables, 𝑥1 , 𝑥2 and 𝑥3  over 100 

iterations. The x-axis represents the iteration count, 

ranging from 0 to 100 while the y-axis represents the 

value of the variables, and over the iterations. 𝑥1 (blue 

line) starts at approximately 0.0, remain stable for the 

first 50 iterations, exhibits no fluctuations and keep 

decreasing around the 100th iteration.   𝑥2 (orange line) 

starts at approximately 0.0, remain stable for the first 50 

iterations, exhibits no fluctuations and keep decreasing 

around the 100th iteration.  𝑥3  (green line) starts at 

approximately 0.0, remain stable for the first 50 

iterations, exhibits no fluctuations and keep on 

increasing around the 100th iteration. The initial 

iterations show no significant changes in the values of 

𝑥1 , 𝑥2  and  𝑥3  indicating the algorithm is actively 

adjusting the variables to converge towards a solution. 

 

CONCLUSION AND RECOMMENDATION 

In conclusion, the conjugate gradient method converges 

faster and more accurate than the SOR method and 

Gauss-Seidel method. It requires less iteration to reach 

the final solution and is particularly effective for large, 

symmetric, positive definite system, with minimal 

effort compared to the SOR method and Gauss-Seidel 

methods. 

The comparative analysis of Gauss-Seidel, Conjugate 

Gradient, and Successive Over-Relaxation methods for 

solving nonsymmetrical linear equations reveals 

distinct performance characteristics. The Conjugate 

Gradient method consistently demonstrated superior 

convergence speed and stability, making it the most 

efficient and reliable choice for large-scale applications. 

The Gauss-Seidel method showed slower convergence 

and oscillatory behavior, but remains a viable option for 

smaller systems or specific applications where 

computational cost is a concern. Conjugate Gradient 

method is recommended for its superior convergence 

properties and efficiency, Gauss-Seidel method may be 

considered, but requires careful monitoring of its 

convergence behavior. The Successive Over-Relaxation 

method balanced convergence speed and stability, 

making it a suitable choice for general-purpose use. 
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APPENDIX 

MATRIX 1 

4𝑥1 − 𝑥2 = 15 

−𝑥1 + 4𝑥2 − 𝑥3 = 10 

−𝑥3 + 3𝑥4 = 10 

MATRIX 2 

𝑥1 + 2𝑥2 − 3𝑥3 = 3 

2𝑥1 − 2𝑥2 − 𝑥3 = 11 

3𝑥1 + 2𝑥2 + 𝑥3 = −5 

MATRIX 3 

𝑥1 − 4𝑥2 − 2𝑥3 = 21 

2𝑥1 + 𝑥2 + 2𝑥3 = 3 

3𝑥1 + 2𝑥2 − 𝑥3 = −2 
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