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ABSTRACT 

Weeds are an unwelcomeguest at farmlands, as they are undesired plants that manage to thrive in conditions that are 

not conducive to their growth. These weeds compete with crops for essential resources such as sunlight, water, and 

carbon dioxide. Therefore, it is imperative to make a deliberate effort to eliminate weeds from agricultural land. 

Maize is a staple food in many countries and serves as a primary source of carbohydrates. It is versatile, being used 

for human consumption, animal feed, and industrial applications. Weeds are one of the major obstacles faced in 

crop production. Weeds compete with plants for nutrients, space and sunlight, affecting the quality of crop yield. 

This paper aims to use machine learning to train a model to identify weeds and maize plants on the farmland. This 

research focuses on implementing a real-time detection system using the YOLOv5 (You Only Look Once version 

5) deep learning model. The Machine learning model was developed using a training set of about 3000 images of 

maize plants obtained from the farmland. The obtained data were annotated via makesense.ai and the labelled 

dataset was divided into training and testing sets. An overall accuracy of over 90 per cent was achieved with the 

implemented model and a mAP value of 0.95, demonstrating the efficacy of our approach for identifying and 

differentiating a maize plant from the weeds. Further integration of the model into a drone or unmanned ground 

vehicle is hereby recommended. 

 

Keywords: Agriculture, computer vision, machine learning, weed, YOLO v5 

 

 

 

INTRODUCTION 

Maize, also known as corn (Zea mays) is one of the 

most cultivated crops globally. It acts as a staple food 

and a primary ingredient in livestock feed, it is also an 

essential element in various industrial products.It 

possesses the most extensive genetic variability among 

all the major cereal grains (Echkoff & Paulsen, 1996). 

Most times, maize can be consumed directly, either in 

the roasted or boiled formand is a fundamental dietary 

component for over two hundred million people (Du 

Plessis, 2003). The maize crop and weeds are in intense 

competition for nutrients, space, light, and water, all of 

which are essential for their respective growth and 

development (Sharma & Rayamajhi, 2022; Rajcan & 

Swanton, 2001).Weeds are plants that grow in locations 

and seasons where they are undesired, particularly amid 

cultivated crops or ornamental plants. (Sharma & 

Rayamajhi, 2022). Weeds pose a significant challenge 

to crop cultivation, leading to substantial reductions in 

maize yield across global production systems (Mhlanga 

et al., 2016). Maize is at a high risk of infestation by 

weeds due to its slow rate of growth during the starting 

stages, which can last up to forty days after sowing 

(Shrinivas, 2016). Maize production canbe hindered by 

a variety of living factors such as insects, pests, 

predators, and weeds and non-living factors such as 

drought, salinity, and heat, with weeds being 

particularly significant in restricting crop yield (Sharma 

&Rayamajhi, 2022). Reports have shown an estimated 

global loss in total maize production as a result of weed 

action to be around 37 per cent (Sharma &Rayamajhi, 

2022). Hence, the need to effectively eliminate weeds 

in the cultivation of maize cannot be overemphasized as 

maize is a major source of food globally. 

Liebman et al. (2001) explained that plants classified as 

agricultural weeds are particularly adept at thriving in 

disturbed yet potentially fertile locations, and can 

persist in large numbers despite facing repeated 

disturbances. Organic growers often struggle with weed 

control as a major hindrance in their farming practices 

(Abouziena & Haggag, 2016). Weed management 

involves techniques and approaches aimed at regulating 

and reducing weed populations. Every measure is 

designed to hinder the growth and spread of weeds, 

either directly or indirectly, while also facilitating the 

successful growth of the desired crop (Pontes et al., 

2022; Knezevic et al., 2019). 

The customary approach to weed control in agriculture, 

which relies on manual labour and extensive herbicide 

application, is associated with notable issues such as 

resource inefficiency and environmental degradation. 

The indiscriminate use of herbicides not only results in 

increased operational costs but also gives rise to 

ecological concerns, posing a threat to biodiversity 

(Otorkpa, 2017; Liu & Bruch, 2020). The intersection 

of agricultural technology and environmental 

sustainability has prompted the exploration of 

innovative solutions for weed management in modern 

farming practices. Among these advancements, the 

integration of weed identification with technologies 

such as artificial intelligence (AI), machine learning, 

and image identification has emerged as a promising 
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frontier. Wu et al. (2023) used YOLOv4 for small 

target weed-detection. This paper examines the 

application of machine learning to identify weeds on 

the farmland using YOLOv5. This dynamic solution 

can be implemented into robotic systems to automate 

the weeding process to improve crop yield and the 

quality of maize to be produced. 

Weed management is important for modern agriculture 

to improve crop yield and prevent quality losses caused 

by weeds competing with plants for essential resources. 

Traditional weed control methods, including manual 

removal and chemical herbicide application, are labour-

intensive, time-consuming, and potentially harmful to 

both the environment and the farmer. Machine Learning 

can be used to analyze images and sensor data to 

accurately detect and identify weeds, supporting 

precision agriculture practices. This approach can 

optimize weed control, reducing herbicide usage and 

labour costs.  

Wang et al. (2007) used two optical weed sensors, 

along with their control modules (comprising a central 

control module, a global positioning system unit, and a 

spray-control module) to design an embedded system 

for weed elimination. Upon conducting tests in two 

wheat fields, the system exhibited an accuracy rate 

slightly exceeding 70 per cent. However, the system's 

reliability is compromised by a 30% failure rate, 

suggesting that 3 out of every 10 crops could 

potentially be misclassified. 

Dasgupta et al. (2020) reported an integrated wireless 

network, IoT devices, and AI methodologies to provide 

agricultural crop suggestions to farmers by considering 

variables such as temperature, annual precipitation, 

total land size, crop growth history, and other available 

resources. Additionally, the identification of 

undesirable plants in crops, specifically weed detection, 

is executed using a drone equipped with frame-

capturing capabilities and deep-learning techniques. 

The utilization of the Naïve Bayes algorithm for crop 

recommendation, based on multiple factors detected by 

WSN sensor nodes, has yielded an accuracy rate of 

89.29%. 

Mazzia et al. (2020) implemented a real-time embedded 

solution, inspired by "Edge AI," to detect apples using 

the YOLOv3-tiny algorithm on several embedded 

platforms, including Raspberry Pi 3 B+, Intel Movidius 

Neural Computing Stick (NCS), Nvidia's Jetson Nano, 

and Jetson AGX Xavier. The training dataset was 

compiled from images taken during a field survey in a 

northern Italian apple orchard, while the testing dataset 

included filtered images from a popular Google dataset 

featuring apples in various scenes. The study 

successfully adapted the YOLOv3-tiny architecture for 

small object detection and demonstrated that the 

customized model could be deployed on cost-effective 

and energy-efficient embedded hardware without 

compromising mean average detection accuracy. 

Venkataraju et al. (2023) utilized advanced learning 

techniques to differentiate weed from imagery. They 

explored the application of five state-of-the-art deep 

neural networks, namely VGG16, ResNet-50, 

Inception-V3, Inception-ResNet-V2, and mobile-V2. 

The study encompassed the utilization of multiple 

experimental settings and combinations of datasets. 

Notably, a comprehensive weed-crop dataset was 

created by amalgamating several smaller datasets, 

thereby addressing class imbalance through data 

augmentation. The results indicated that VGG16 

demonstrated superior performance on a small-scale 

dataset, while ResNet-50 outperformed other deep 

networks on the larger combined dataset. 

 

MATERIALS AND METHODS 

Developing the model 

Developing the machine-learning model involved 

several key steps: data collection, data annotation, 

training, testing, and result analysis as shown in Figure 

1. First, a large and relevant dataset was gathered, as its 

quality and quantity significantly impact the model's 

performance. Next, the dataset was accurately labelled 

to ensure the model had the correct outputs to learn 

from. The annotated dataset is then divided into training 

and validation sets. The training set is used to teach the 

model by adjusting its parameters to minimize errors. 

The trained model's performance was evaluated using a 

separate test set to gauge its accuracy and 

generalizability. Finally, the model's performance 

analysiswas based on metrics, such as accuracy, 

precision, recall, and F1 score, and further adjustments 

were made as needed to achieve the desired criteria for 

deployment. 

 

 

 
Figure 1: Block diagram of the machine learning model 
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Figure 2: Some of the collected image dataset 

 

 

Data collection 

Over 3000 high-resolution images, some of which are 

shown in Figure 2, were collected at the Federal 

University of Agriculture, Abeokuta maize plantation. 

The images were snapped using a 32MB resolution 

camera of a mobile device. All the images were 

collected and grouped into four folders for ease of 

annotation. The collected images were field dynamic as 

the images contained maize plants and weeds 

surrounding the maize plants. 

Data annotation 

The collected data were annotated using makesense.ai 

online object detection platform. Data annotation 

involves drawing bounding boxes around each object in 

the image. Two classes were created namely “maize” 

and “weed” and each bounding box is classified to the 

appropriate class that the labelled object belongs to as 

shown in Figure 3. 

 

 
Figure 3: Annotation using makesense.ai suite 

 

Model training 

Training the YOLOv5 model encompasses several 

steps. First, the labelled dataset is divided into training 

and validation sets. The training set is used to optimize 

the model's parameters, while the validation set 

assesses its performance. The training process involves 

using transfer learning and fine-tuning techniques to 

utilize pre-trained weights and adapt them to the maize 

disease detection task. The training employs a loss 

function that integrates localization loss, objectless loss, 

and classification loss. These elements ensure the 

model accurately identifies disease regions, assigns 

high confidence scores to correct detections, and 

correctly classifies the diseases. The model undergoes 

training for multiple epochs, with hyperparameters such 

as learning rate, batch size, and momentum carefully 

adjusted to achieve optimal performance. The labelled 

image of the maize plants and the weed in their 

bounding boxes is shown in Figure 4 after the 

completion of the training model. 
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 Figure 4: Labelled images showing the maize plants and weeds in their bounding boxes 

 

 

TESTING AND RESULT  

Training and validation loss curves 

The training and validation dataset were tested using 

the model and the graph is shown in Figure 5, it can 

be seen from the graph that the Bounding Box Loss, 

decreased steadily, reaching a minimum value of 

0.04, also the Objectness Loss was reduced to 0.028 

while the Classification Loss converged to 0.15. It 

can also be deduced that a Precision of 1.00 was 

achieved at the final epoch. 

 

 

 

 
Figure 5: Training and validation loss curves 
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Confusion matrix 

The confusion matrix (illustrated in Figure 6) provides 

a detailed examination of the real positive, false 

positive, false negative, and real negative rates for each 

class. It identifies particular areas where the model may 

have mis-classify maize plants and weeds. 

 

 
Figure 6: Confusion matrix 

 

 

The Classes involved in the matrix are: 

Maize: This represents areas in the image where maize 

plants are present. 

Weed: This class indicates areas with weeds. 

Background: Areas that are neither maize nor weed are 

considered as background or irrelevant in classification. 

The model has a recall of 1.0 for the maize plant, 

indicating that all maize plants were correctly identified 

with no misclassification as either weed or background. 

This is an ideal performance for maize detection. The 

recall for weed detection is 0.72, which indicates that 

72% of the weeds were correctly classified, but there is 

still a 28% error rate, where weeds were mistaken as 

background. 

The model is very accurate at detecting maize (1.0 

recall), showing that it can distinguish maize plants 

well from the surrounding environment. However, the 

performance in classifying weeds and background is 

less than ideal. A large portion of the background is 

misclassified as weed (92%), leading to an inflated 

weed count. This suggests that the features extracted by 

YOLOv5 for distinguishing between weeds and 

background are not robust enough, possibly due to 

similarities in colour or texture. 

Precision-confidence test 

The precision-confidence curve plays a crucial role in 

assessing the performance of object detection models 

like YOLOv5, particularly in agricultural tasks such as 

maize-weed classification. This curve as shown in 

Figure 7 shows the relationship between precision (the 

ratio of correctly predicted positive observations to the 

total predicted positives) and confidence (the model's 

certainty in its predictions).  

 

 
Figure 7: Precision-confidence graph 

 

 

The precision curve for maize is near-perfect, showing 

that YOLOv5 performs exceptionally well in 

identifying maize even at lower confidence thresholds. 

This is typical in agricultural object detection when the 

object of interest (maize) has distinct and easily 

recognizable features such as structured rows and 

uniform colour, which contribute to the model’s high 

precision. The precision for maize in this study remains 

at 1.0, indicating zero false positives at high confidence 

levels. This outcome aligns with the work by Wu et al. 

(2023), where YOLOv4 demonstrated near-perfect 

classification for high-contrast crops like maize. The 

distinct characteristics of maize plants enable the 

YOLOv5 model to make confident predictions without 

much ambiguity, as observed in the nearly vertical rise 

of the maize curve in the graph. 

F1 score 

The F1 score shown in Figure 8 is a performance metric 

in machine learning that combines precision and recall 

into a single measure. It is the harmonic mean of 

precision and recall. It gives an insight into the 

robustness of the model and offers a balanced 

evaluation. It is particularly useful in classification 

tasks where the distribution of classes is imbalanced or 

when the cost of false positives and false negatives is 

different. In the context of maize-weed classification 

using YOLOv5, the F1-Confidence curve helps in 

evaluating how well the model handles both classes 

under varying confidence thresholds. 

The F1 curve for maize remains consistently high 

across a wide range of confidence levels. The curve 

shows an almost ideal behaviour, with the F1 score 

reaching close to 1.0 (perfect precision and recall) and 

remaining high between 0.2 and 0.8 confidence levels 

before dropping off sharply. This behaviour indicates 

that the YOLOv5 model is very effective at detecting 

maize plants, maintaining a strong balance between 
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precision and recall across a broad spectrum of 

confidence thresholds. The curve representing weed 

detection shows a significantly lower F1 score 

compared to maize. It peaks around 0.7, with a 

noticeable drop in performance at confidence thresholds 

above 0.6. The lower F1 score for weeds can be 

attributed to several factors, including high variability 

in weed appearance, similarity to background elements, 

and possible class imbalance in the training data.  

 

 
Figure 8: F1 score- confidence curve 

 

 

 
Figure 9: Graph showing the recall-confidence curve 

 

 

Recall-confidence test 

Recall, also known as sensitivity or real positive rate, 

evaluates the capacity of a model to accurately detect 

all pertinent instances in a dataset. It is calculated as the 

proportion of true positive predictions to the total of 

true positives and false negatives. A high recall value 

suggests that the model is proficient in capturing 

genuine positive instances, thereby reducing the 

occurrence of false negatives. The graph shown in 

Figure 9 indicates the recall-confidence interaction of 

the model after validation and testing.The maize 

classification curve maintains a high recall (above 0.8) 

up to a confidence threshold of around 0.85. This shows 

that YOLOv5 performs well in detecting maize at 

various confidence levels, achieving good results in 

identifying maize even at higher confidence levels. As 

confidence increases beyond 0.85, recall begins to drop 

sharply. This is expected because as the model becomes 

stricter (requires higher confidence to classify), it 

begins to miss some maize detections, reducing recall. 

The weed curve shows a lower recall across the 

confidence spectrum compared to maize. Recall stays 

between 0.6 and 0.8 for most of the curve, indicating 

that the model is less effective in correctly identifying 

weeds compared to maize. The sharp drop in recall for 

weeds starts at a lower confidence threshold (~0.75) 

compared to maize. This indicates that the model's 

ability to correctly identify weeds diminishes quickly as 

confidence requirements increase. The All Classes 

curve represents the combined performance of the 

model across all classes (maize and weed). The curve 

shows that, in general, the model achieves an overall 

recall of 0.93 at a confidence threshold near 0, 

indicating that the model is highly sensitive in detecting 

both classes but may trade off precision at lower 

confidence levels. As confidence increases, this curve 

shows a steep drop-off in recall beyond 0.85, indicating 

that the model struggles to balance recall across classes 

at higher confidence levels. 

 

CONCLUSION 

The machine learning model was successfully designed 

to achieve the set objective of identification of weed 

and maize with over 90per cent accuracy. This was 

achieved by implementing a transfer learning algorithm 

which enables the model to recognize patterns in the 

training data set and then map it onto the validation 

dataset. The accuracy of this machine learning model 

can be enhanced by employing the use of aerial images. 

This is because hundreds of weeds can be associated 

with maize plants and this is due to factors such as 

temperature, soil condition, environmental humidity 

and pressure. Effective usage of machine learning can 

be integrated into hardware components to help 

enhance processes applied in weed control. The 

hardware can be integrated with autonomous spraying 

systems, robotic arms to uproot weeds or hammer-type 

actuators to crush weeds.  
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