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ABSTRACT

This paper focused on multi-term fractional order Fredholmintegro-differential equation which was transformed to
integral equation by using Riemann-Liouville fractional integral. The uniqueness of solution of the multi-term
fractional order Fredholmintegro-differential equation was proved using Banach contraction principle alongside the
convergence of solution of the multi-term fractional order Fredholmintegro-differential equation, where Cauchy
convergence criteria was used. Examples were given to prove the solvability of the multi-term fractional order

Fredholmintegro-differential equation.

Keywords: Fractional order, uniqueness of solution, convergence, Fredholmintegro-differential equation.

INTRODUCTION

Many physical events are better explained by fractional
derivatives, because fractional operators take the
evolution of the system into account (Almeida, Tavares
and Torres, 2019). However, it is quite challenging to
find analytical solutions for these fractional differential
equations (FDEs). Therefore, numerical approximation
plays a vital role in finding the approximate solution to
these equations and as such, as it will be seen in the next
section. Numerous scholars have created and introduced
numerical approaches to find approximations to the
solutions to this class of equations (Neimati, Lima and
Torres, 2021).

Consequently, in the past few decades, applications of
fractional calculus were reported in many branches of
science, engineering and social sciences (Hilfer, 2000;
Zabadal, Vilhena and Livotto, 2001; Oldham, 2010;
Ertuk, Obidat and Momami; 2011; Yang, and Zhu, 2011,
Magin, 2012; Fallahgoul, Focardi and Fabozzi, 2016;
Zheng and Zhang, 2017; Mahmodov, 2017; Baleanu,
Jajarmi and Hajipour, 2017; Singh, Kumar and Baleanu,
2017; Stoenoiu, Bolboaca and Jantschi, 2008; Hajipour,
Jajarmi and Baleanu, 2018; Huang and Bae, 2018; Bulut
et al., 2018; Baleanu and Lopez, 2019; Tarasov, 2020;
Ming, Wang and Feckan, 2019; Mainadi, 2022).
Fractional calculus has in the recent years attracted so
much attention of researchers in various branches of
mathematics and sciences as a whole. These researchers
have created and studied the existence and uniqueness of
solutions of different kinds of fractional differential
equations such as Balachandran and Kiruthika(2011),
Samko, Kilbas and Marichev(1993), Diethelm and Ford
(2002), Yuste and Acedo (2005), Kilbas and Marzan
(2005), Pilipovic and Stojanovic (2006), Agawal,
Benchohra and Hamani (2010), Baleanu and Mustafa
(2010), Tian and Bai (2010), Wei, Li and Che (2010),
Anguraj, Karthikeyan and Trujillo (2011), Aghajani,
Banas and Jalilian (2011), Idczak and Kamocki (2011),

Kostic (2011), Agarwal and Ahmed (2011), Hu and Liu
(2011), Aghajani, Jalilian and Trujillo (2012), Hamoud,
Ghadle and Atshan (2019), Rui (2011) and Caballero,
Harjani and Sadarangani (2011) and so many more.

In this study, we considered the multi-term fractional
order Fredholmintegro-differential equation of the form

k

D¥(x)= Y (D" ¥(x)+9(x)+ [ K(ouo N [¥(c))dr
=0

subject to the initial condition

¥ (0)=d,, n=012,..,m-1

m—1<50<51<~-<5j<ﬂ§m, me N,

where D is the differential operator defined in Caputo

()

sense, ¥ : Q—R, Q=[0,1] is a continuous
function which needs to be determined, [j
N : Q—>R are given continuous functions,

K : QxQ — R is the kernel of integration which is
also continuous, N :R — R s a Lipschitz function.

MATERIALS AND METHODS
Definition (Contraction Map Rudin (1953)). Let X

be a metric space, a mapping T : X > X
L<[0,1) such that
||Tx—Ty|| < L||X— y|| forallx,y e X.

Definition (Fixed Point Zeidler (1986)). Given a map
T : A— B, everysolution y of the equation
Ty=y

is called a fixed point of T .

Definition (Banach Contraction Principle Zhou
(2014)). Let X be a complete metric space, then each

is a

contraction if there exists
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contraction mapping T : Y —Y has a unique fixed
point y of Tin Y ;thatis, Ty=Yy .
Definition (Riemann-Liouville Fractional Integral,
Kilbas (2006)). Reimann-Liouville fractional integral of
order [ ofafunction W is defined as

1 ¢ 51
1P (X)=——1 (x-s)" ¥(s)ds,
F(ﬁ) Io
Where R™ is the set of positive real numbers.
Definition (Riemann-Liouville Fractional Derivative
Kilbas (2006)). Reimann-Liouville fractional derivative

of order S ofafunction W is defined as
D’¥(x)=D"1""¢(x), m-1<B<m, meN

d" 1

= wj:(x—s)m“‘P(s)ds].

x>0, feR",  (3)

Definition (Caputo Fractional Derivative Kilbas
(2006)). The fractional derivative of W(X) in the
Caputo sense is defined by

D/¥(x)=1""D"(x)

1y npa 0"P(3) )
_F(m—ﬂ)IO(X ) = ds, m-1<pg<m.

(4)
With the following properties

|ﬁDﬂ‘P(X)=‘P(X)—Z?:_gT(:!(O) Xn, m-1<B<m,

1D (x)=1"7¥(X)
m-1<pg<m meN ,

Ia‘P(X)= , Where y(x):l, Xe[O,l].

O<y<p , and

XIZ
I'(a+1)

RESULT
In this paper, we denote by

||-||wthe sup normon C(Q,R), iefor r eC(Q,R),

I, =sup,q r (x)].
||||w thesupnormon C(Q,R),iefor geC(Q,R)
ol =sup.q |9 (x):

We make the following hypotheses:
there exists a constant ¥ >0 such that for any

¥, ¥, €C(Q,R) we have
‘N(\Pl(x))_N(\PZ(X))‘SQHKPFTZHOO xe[0,1]

there exists a constant ) such that

Q= (fsel[JOF)l]J.z‘k(J,r)‘dr <o,

Lemma 1. Let ¥ :Q—>R and g : Q—>R

be continuous functions. Then, a function ¥ is a
solution to the fractional integro-differential equation

(1)—(2) if, and only if,

W(X)=r:_:d"!x“+gr(;(f)5)r( ~0)""¥(g)do
1 ¢x B-1
+mjo(x—o’) 4(c)do ®)
[ x-0) [ (0N ((e)ar)
F(ﬂ) 0 0

Proof Using equation (3) on equation (1) and

property (i), (ii) together with the initial condition (2)
we have,

17(D7¥(x)) = |ﬁ(2rj(x)o"np(x)]+ 17 (g(x))+ |ﬁ(jz|< (c.7)N (‘P(r))dr)
:Zk:rj(x)lﬁ(D"‘JW(x))Jr 17 (g (x))+ I'B(IIOK(O-,T)N (‘I‘(T))dr)

:mz‘txy(")(o) K

n=0 -

+mfo

Lt
()

m-1

no n! i—o
1
+r(ﬁ).[o

yr
r(p)

20(55“

(X—O')/’ - g(o)do

/; 551

ri(c)¥(oc)do

[1c—o) ('K (e 0)N (¥ () de ) do
-3 S +Zkll_(ﬂl_d)j:(xa)“il r,(c)¥(c)do
(x—o) " g(c)do

[ix=o) ([ (@.0)N (¥(2))de)do
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Thus, ¥ solves (1)—(2) if, and only if, ¥ solves (5)
Theorem 1.  (Uniqueness of Solution) Assume that (pl) and (pz) holds, and if,

k
I, o0
jz_;r(ﬁ—aj ) Ty ©

then there is a unique solution ¥ € C (Q, R) to problem (1) —(2) .

Proof: Let T be an operatorsuchthat T : C (Q R) —-C (Q, R)defined from equation (5) as

(T¥)(x) HZ;n“ X”+Zr( )j (x=) 71, (0)¥(0)do
ey laxe) ol Y

1

+mJ':(X_O_)ﬁ1(J‘ZK (o"T)N (‘P(r))dr)da.

The objective here is to apply Banach contraction principle. To do that, we will show that T is a contraction.

First, we note that T is well defined. Indeed, since
X > Y madn , X YN (x)( a JJ‘P)(X), xr—>(|ﬂg)(x), X — I’3<ﬁJK(a,r)N (‘P(r))dr)

are continuous, the right hand of equation (7) is well defined and XI—)(T‘P)(X) is continuous. Thus, for
‘PGC(Q,R), TY isalsoin C(Q,R).

Let ¥,, ¥, EC(Q,R) and let Xe[O,l]. By definition of T and denoting U :(T‘Pl)(x)—(T‘Pz)(X),

we have

V=

2T (5- 5)1( ~0)" (@) (i () - s (o)) do

Jor

ﬁ Jix=0)"*(JK (0. 2) (N () =N (. (2)))dr do

<Jzkér(ﬂ 571, x-0) 0@ (#1(0)- ¥ () o)+

%ﬂ)ﬁ(x—a)ﬂ1(]‘2K(0,7)(N(‘P1(r))—N(\Pz(r)))dz-)dg
szk(;r( 1_5_)J‘:(x_ ﬁo 1|r (G)H‘P ‘Pz(g)|dg+
r(lﬂ)_[ (x _O')ﬂ 1(]’ |K GT)HN )) N(\Pz(f))|d’[)d0
"r” "\P -¥ ”w Q@”\P _IPZH

b oy OO oy

< X ||rj||m||‘I’1—‘I’2||w £-5; 9(9”\{’1_\{’2”0o s
3 T(B-6,+1) r(B+1)

1 —
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Thus,

v, oty <3 Ik v Y eraixefon
' e j:or(ﬁ—5j+1) F(ﬂ+1) 1 2|l ? 1.

k il
120 r(p-5, +1)

We conclude that T is a contraction since by equation (6), (Z + I )<1. Hence, By Banach

r(p+1)

contraction principle, T has a unique solution ¥ in C (Q, R) .

Theorem 2. (Convergence of Solution). If the solution is convergent, then it converges to the exact solution of
the Fredholm fractional integro-differential equation.

Proof Let S, S, be arbitrary partial sums with v <u. We show that S, is a Cauchy sequence.

u?r v

Let S, = Z‘;:O\PJ— (X) and S, = Z‘}ZO‘PJ. (X) Since v <u, then, we have from equation (5)

5,-8,= >, (¥)

:Vﬂ 1 X P "
:j—oF(,B——§j)-[0(X_G) rj(a)jg;lq’j(a)da (8)
+ﬁj‘:(x—6)ﬂ—l (J-:)K (o',r) N (j_iwl‘l"j (T)jdz‘]do-_

Let N (ZLM‘PJ- (r)) =¥4.,.H, (), then equation (8) becomes

|Su_Sv|: _:Z:l\Pj(X)
IS 1 X \poa u 9)
S @ (e

1 x p-1| rt N
+mfo(x—d) UOK(G-T)N[Z‘PJ-(T)JO'TJO'G-

j=v+1

If, we let Z‘};\l,‘l’j (X) =S,,-S,4, Z‘;;},Hj (t) =N (Su—l)_ N (Sv—l) in equation (9), then we have

K 1 x
||su—svllwﬁf£2§(§mf°

+%j;(x_0)m(ﬁ|< (27)(N(Sy )~ N (Sv_l))dr)daD

(x - 0')675"71 r; (o) (Sufl - Svfl) do

k 1 x —5;—
smzé(gmh(x—o)” "n@][Sss=S.alde

e (e (s, N s, far)as )
K ”rj ”OO ”Sua -S
= (B9

1_I\P”Su—l_sv—lllco J'X(X_O_)B—ldd
RORERE

< nll. Qo
- ( ST (B-0,+1) T(A+1) [Sus = Seaall.-

<

;1”00 j;(x — O')ﬂ75171 do
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Thus,
S, =S, < @[S 1 =Sl - (10)

_k Il 9%
where @ =35 4 Moo T T

Observe that, from equation (10)
8, =S\l <@[Sua=S.ul, <o[Sy 2 =Sial, << ]S =S,
Also from equation (10)

”Su—l - Sv—:L”Oo < ¢||Su—2 - Sv—2||OO ) ||Su—2 - Sv—2||OO < ¢||Su—3 - Sv—3 "OO ,
Therefore,

IS, =S, [, <@[Sus—Suu], <O°[Su2 =S, < <@ [S= S, 11)
Let u=V+1, accordingly in equation (11) then we have

IS, =S\, <0[S, =S, ], <@*[Su =5, ], < <0'[S -S|, -

el

That is,
IS, =S|, <@'[[S: =S|, (12)
||Su - Sv”m can be written as follows
”Su - Sv”oo :” Sv+l - Sv + Sv+2 - Sv+1 + Sv+3 Sv+2 + Sv+4 S +3
T+ Sy ueg) T Sy TSy TSy e
=Sy =Sy +8,2 =Sy + S0 =Su2 + S, —Sis 13)
++S, ,—S,,+S, =S, 4 I,
<[Sva=S.[, +1Sv.2 =Syl #[Sua —Suecl +
[Sv-s =Suuall, ++++[Sue = Suusll, +1Sy =Sl -

From equation (12), let u=v+1, then
[ =Su, <@"[8: =S,
s <o S-S,
s <p"?[8, =S,

v+2 v+l

-S

v+3 V42 ||o

[8s=Suall < 0", =Sol..-

Therefore, equation (13) can be written as
||Su _SV”OO < ((DV +¢)v+l +¢v+2 _'__n_'_gou—l)”Sl_80”DO

=" (1+ Q"+ ¢ +---+(p“"”l)||81 _80”00'

1_ u-v
2 s sl

_ 9
[Su=S.l. == (DII‘PlILO-

By geometric series, this implies

s~ =o'

since0 < @ <1, thismeans 1— " " <1, then
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But “Pl( ‘<oo and lim2- > =0,since " —0 as V—> oo, Therefore, ||S -S || —>0as v—>oo. We

V—)oo

conclude that S, is a Cauchy sequence in C [0,1]. Therefore, lim¥ =Y. Thus, the solution is convergent.

N—o0

Examples
Example 1 (Ghomanjani (2020)). Consider the fractional order integro-differential equation of the Fredholm type

5 I L
D*&(x) = 3\/_( 3—%— + XT+XT r)dr, (14)

Subjectto £(0)=¢'(0)=0 with exact solutionas &(X)= X

Solution
From Theorem 1, and denotingU = (T‘I’l)(x) —(T‘I’2 )(X) as before, we have

|U|: F(li) j:(x—a)g_l(ﬁ(ov+0'212)(‘1’2 (T)—‘Pl(r))dr)da
< F(li) j:(x—a)gl(jz‘ar+0'2r2H\P2 (r)—‘{’l(r)‘dr)da
SWI:(X— l(J‘ ‘ar—i-a ‘dT)dO'
Lt ) (242 oo

3

| S -

2r(y) 3r(y)
Thus,
[TW,-TW,| <(0.16994)|¥, ¥, .

We see that 0.16994 <1, Hence, the example above satisfies the condition of Theorem 1 and therefore,
unique solution exists.

Example 2 Rostamy (2013) Consider the multi-term fractional order integro-differential equation
DZ‘P(X)—XZD%‘P(X)—\/;D%\P( X)— \/_\P +AJ- Xt (t)dt =

G\EX—S\/XT—EXS —W\ﬁ

(15)

Subject to ‘P(O) = ‘P'(O) =0 with exact solution ‘I’(X) = ﬁx3and A=0.

Solution: Equation (15) can be written as

FULafia Journal of Science & Technology, Vol. 8, No. 2
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A O R e K L A O RGO L
*mﬁ(x—a)az\%(0)—‘P1(a)\da
) 9. (o)- (o
Forpg ol
%Lﬁ(x—a)azda
Loyt
r(35)x*  T@E)x (4%

Thus,
[TW,-TW,| <(0.45576)|¥, -, .

Since 0.45576 <1, we say that example 2 satisfies
the condition of the Theorem 1.

CONCLUSION

This paper focuses on multi-term fractional order
Fredholmintegro-differential equation which was
transformed to integral equation by using
Riemann-Liouville fractional integral. The study of the
uniqueness of solution of the multi-term fractional order
Fredholmintegro-differential equation was proved
alongside the convergence of solution of the multi-term
fractional order Fredholmintegro-differential equation.
Examples were given to prove the solvability of the
multi-term fractional order Fredholmintegro-differential
equation.
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