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ABSTRACT 

Count data are intrinsically measures of event frequency; it is clear that there is an intrinsic relationship with 

recurring time to event. Events are typically tallied within time intervals for practical and convenient reasons. The 

existence of outliers is one issue that prevents count data from being stationary in time series analysis; this has an 

impact on the effectiveness of fitting several common stationary models to the count data collected over time. Thus, 

the purpose of this study was to examine how well the Integer Valued Autoregressive (INAR) model performed 

while modeling count data that contains outlier(s). While this model has been studied for count time series data, it 

has not been studied for varying degrees of outliers. A monte-carlo simulation was carried out to select the best 

INAR(p), where p=1, 2, 3 and 4 on data with 10, 20 and 30% outliers at different sample sizes. The INAR (4) has 

the best fit across the sample sizes at the larger percentages of outliers while INAR (3) at the lowest percentage with 

smallest information criteria of assessment and they are therefore recommended for such modeling.  
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INTRODUCTION 

The values of certain statistical variables measured 

across a consistent collection of time points are called 

time series. Monthly sales in a store, monthly 

HIV/AIDS cases reported in a hospital, annual 

production by a corporation, the number of eggs laid 

daily by farm animals, the amount of power consumed 

in kilowatts, and information on daily population motor 

registration are a few examples of time series data. 

Counts, such the number of car accidents, hospital 

patients, customers waiting for service at a specific 

time, and so on, are frequently included in time series 

data. 

In many fields, time series count data which is the 

number of times an item or event occurs within a 

specified period of time is crucial. These include the 

quantity of heart attacks or days spent in the hospital in 

medical studies, the quantity of absences from classes 

over a given period of time in education research, or the 

quantity of instances in which parents abuse their 

children in social science studies. In order to simulate 

the situation of a count random variable (RV) with a 

non-negative integer value, several statistical 

distributions have been utilized. An excellent summary 

of these distributions is provided by Johnson et al. 

(2005). 

Time series of counts have been of interest to 

researchers, as evidenced by recent studies. For 

example, Weiß (2009) worked on time series of counts 

with overdispersion and suggests using Integer-Valued 

Generalized AutoregRessive Conditional 

Heteroskedasticity (INGARCH) models to describe the 

integer-valued processes with overdispersion. The work 

of the author was limited to the unique scenario where p 

= q = 1. In his analysis of several time series of claim 

counts for pay loss and health care-only claims at the 

Workers' Compensation Board of British Columbia 

(WCB), Harvey and Fernandes (1989) found that the 

time series of counts could be fitted by a stationary 

Poisson INAR(1) model. The indicated that the reported 

empirical mean and variance of the data, which are 

8.60417 and 11.3575, respectively, are to blame for the 

genuine marginal distribution's overdispersion. 

Furthermore, Freeland (1998) proposed that a Poisson 

INAR(1) model might not be the best option. This 

highlights the need for more model research. The work 

of Ndwiga et al. (2019) and Saleh et al. (2021) is 

another source of inspiration for this study. In it, he 

highlights the inappropriate application of the 

Traditional Generalized Linear Model (GLM) in the 

modeling of time series count data. He then examines 

the performance of various models, including Poisson, 

Negative Binomial, Zero-inflated Poisson, Hurdles 

Poisson, and Negative Binomial Hurdles. His findings 

suggest that Negative Binomial Hurdles outperformed 

other models in most scenarios, making it the most 

statistically fit model for overdispersed count data 

containing excess zeros.  

In the quest for robust method for time series count data 

analysis (Akeyede et al., 2022) considered modelling of 

heavy tailed count time series data on number of 

rotavirus data using heavy tailed probabilities, the 

researcher validate the capability of the model in 

accounting forover-dispersion though with some 

deficiency and further recommend the use of INAR or 

ACP model to analyse heavy tailed count time series 

data with outliers. Ndwiga et al. (2019) confirmed the 

in appropriate use of negative binomial distributions 

and poison distributions in modelling count time series 

especially with over dispersion, the researcher further 
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proposes the use of hurdle poison model for analysing 

data with over-dispersion or excess zeros. e.g., non-

Gaussian clustered data, such as counts, are frequently 

modelled by making use of generalized linear mixed-

effects models, which extend the broad class of 

generalized linear models by adding a subject specific 

random effect, often of a Gaussian type, to capture the 

correlation between the repeated measurements per 

subject, he notably pointed the need for a robust model 

capable of handling over-dispersion as well as under-

dispersion as the case may be. 

In practical applications, count data often exhibit 

outliers, over-dispersion, and even heavy-tailedness, 

where the tail probabilities are non-negligible or drop 

extremely slowly. While several models have been 

developed to model count data, Saleh et al. (2021), 

heavy-tailedness and presence of outliers have received 

less attention. Thus, the model an integer-valued 

autoregressive (INAR) process is intended to reflect 

this in this work. This study aimed at determining the 

accuracy of INAR model in modeling heavy tailed 

count time series data at different levels of outliers and 

sample sizes 

 

MATERIALS AND METHODS 

The INAR model is investigated on heavy tailed 

distributions and proportion of outliers. The effects of 

varying sample sizes (n=30,60,...,300) on the 

performance of the models were also examined. The 

optimal condition of orders p, with p = 1, 2, 3, and 4 

correspondingly, is ascertained for the outlier levels at 

each sample size by the application of criteria such as 

the Akaike Information Criteria (AIC), Bayesian 

Information Criteria (BIC), Hannan-Quinn Information 

Criterion (HQIC). Data set were simulated in R 

statistical software with sample sizes of 30, 60, 90, …, 

300, from poison and negative binomial distributions to 

produce count data with outliers. The model under 

study were then fitted to the simulated data so as to 

examine the effect of the proportion outliers on the 

selected orders of the INAR model. 0, 10% (low level 

outliers) and 20% (High level of outliers) of outliers 

were created on sample sizes of data simulated. Each 

constructed data set entails a specific effect of the 

outliers observed in the display of models outputs.  

In simulation, we set our parameters to be ∅1 =1∅2 = 1 

to ensure discrete nature of count data generated. The 

response 𝑌𝑡𝑖  in (1) were generated from poison and 

negative binomial distributions. The four model’s 

orders under study were considered to analyze how well 

the model fits the selected data sets having some 

proportions of outliers.  

Data were generated from linear second orders of 

autoregressive functions given as follows: 

Model 1. AR(2): 𝑌𝑡𝑖 = 𝑌𝑡𝑖−1 + 𝑌𝑡𝑖−2 + 𝑒𝑡               (1) 

𝑡 = 30, 60, 90, 120, 150, 180, 210, 240, 270, 300. 

𝑖 = 1,2, … , 1000 

Where 𝑌𝑡𝑖were simulated from poison families for 

outliers as follows: 

𝜆𝑦𝑖𝑒−𝜆𝑖

𝑦𝑖 !
, 𝑓𝑜𝑟𝑦𝑖 = 0,1,2, …                                              (2)  

 Thus, for the Poisson models𝐸 𝑦𝑖 = 𝑉 𝑦𝑖 = 𝜇𝑖 .  

Also, 𝑌𝑡𝑖were simulated from negative binomial 

families for outliers as follow 

𝑝 𝑦𝑖 ; 𝜆𝑖 , 𝛼𝑖 

=
𝛤  𝑦𝑖 +

1

𝛼𝑖
 

𝛤 𝑦𝑖 + 1 𝛤  
1

𝛼𝑖
 
 

1

1 + 𝛼𝑖𝜆𝑖
 

1

𝛼𝑖
 

𝛼𝑖𝜆𝑖
1 + 𝛼𝑖𝜆𝑖

 
𝑦𝑖

, 𝑖

= 1, … , 1000               (3) 

Here, the dispersion parameter𝛼𝑖 > 0, 𝜆𝑖 = 𝐸(𝑌𝑖); and 

𝑉 𝑌𝑖 =  𝜆𝑖 + 𝛼𝑖𝜆𝑖
2  

Integer-valued autoregressive (INAR) model 

In this work we are interested in a special class models, 

the so-called integer-valued autoregressive (INAR) 

process introduced by McKenzie (1985), Al-Osh and 

Alzaid (1987). The theoretical properties and practical 

applications of INAR and related processes have been 

discussed extensively in the literature. Silva et al. 

(2005) consider independent replications of count time 

series modelled by INAR and proposed several 

estimation methods using the classical and Bayesian 

approaches in time and frequency domains. 

Point prediction for INAR process 

Suppose a non-negative integer-valued random variable 

X and λ ∈ [0, 1], the generalized relation which is 

denoted by𝜆 ( 𝑋), is given by; 

𝜆 ( 𝑋)  =  𝑌𝑗

𝑋

𝑗=1

                                               (4) 

where {Yj}, j =1, ..., X, is a sequence of independent 

and identically distributed non-negative integer-valued 

random variables, independent of X, with finite mean 𝜆 

and variance 𝜎2. The sequence is known as the 

counting series of 𝜆 ( 𝑋). When {Yj} is a sequence of 

Bernoulli random variables, the thinning operation is 

called binomial thinning operation and was defined by 

Steutel and van Harn (1979). The well-known INAR(1) 

process {𝑋𝑡 ;  𝑡 =  0, ±1, ±2, . . . } is defined on the 

discrete support ℕ𝑜  by the equation 

𝑋𝑡 =  𝜆𝑋𝑡−1  +  𝜀𝑡                                                 (5) 

where0 < 𝜆 <  1, {𝜀𝑡} is a sequence of independent 

and identically distributed integer-valued random 

variables, with 𝐸[𝜀𝑡]  =  µ
𝜀
𝑎𝑛𝑑𝑉𝑎𝑟[𝜀𝑡]  = 𝜎𝜀

2.Suppose 

a non-negative integer-valued random variable X and λ 

∈ [0, 1], the generalized thinning operation which is 

denoted by ‘◦’, is given by; 

𝜆 ◦ 𝑋 =  𝑌𝑗

𝑋

𝑗=1

                                            (6) 

where {Yj}, j =1, ..., X, is a sequence of independent 

and identically distributed non-negative integer-valued 

random variables, independent of X, with finite mean 𝜆 

and variance 𝜎2. The sequence is known as the 

counting series of 𝜆 ◦ X. When {Yj} is a sequence of 

Bernoulli random variables, the thinning operation is 
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called binomial thinning operation and was defined by 

Steutel and van Harn (1979). The well-known INAR(1) 

process {𝑋𝑡 ;  𝑡 =  0, ±1, ±2, . . . } is defined on the 

discrete support ℕ𝑜  by the equation 

𝑋𝑡 =  𝜆 ◦ 𝑋𝑡−1  +  𝜀𝑡                                         (7) 

Where 0 < 𝜆 <  1, {𝜀𝑡} is a sequence of independent 

and identically distributed integer-valued random 

variables, with 𝐸[𝜀𝑡]  =  µ
𝜀
𝑎𝑛𝑑𝑉𝑎𝑟[𝜀𝑡]  = 𝜎𝜀

2. 

Four orders: INAR (1), INAR (2), INAR (3) and INAR 

(4) models were considered in this work. To achieve 

this, R-code were developed for their estimation in R. 

The results of the analyses were be compared and 

presented in tables and graphs. The model with the least 

criteria of AIC, BIC and HQIC are considered to be the 

best for the data with various outliers and sample sizes.  

 

RESULTS AND DISCUSSION 

The performance of INAR models were determined 

through simulations on the count data that contain 

outliers. The effect of sample sizes 𝑛 = 30, 100, … ,
300, on the performance of the models were studied. At 

every sample size, the best status of the p, where p = 1, 

2, 3, 4 are respectively determined for the levels of the 

outliers in the data generated using criteria like AIC, 

BIC and HQIC as presented in Tables 1 – 3 and plotted 

on Figures 1a – 3c. 0, 10 and 20% of outliers 

representing no, low and high levels of outliers 

respectively were injected in the data so as to determine 

the best INAR model for each category. The simulation 

study was carried out with 1000 iteration on each case 

in R statistical software. For each iteration, the values 

of the criteria for the assessment (AIC, BIC and HQIC) 

were computed and their average values were recorded 

according to sample sizes as shown in Tables 1 – 3. The 

values from the tables were plot in Figures 1a–3c. The 

model with lowest criteria is considered as the best. 

 

 

Table 1: Performance of fitted models with no outlier (0%) 

Criteria 
Sample Sizes/ 

Model 
30 60 90 120 150 180 210 240 270 300 

AIC 

INAR(1) -53.21 -122.42 -135.03 -220.49 -243.93 -328.15 -362.69 -435.76 -509.04 -612.13 

INAR(2) -56.59 -127.49 -159.31 -228.3 -264.21 -350.7 -394.98 -468.65 -540.14 -682.88 

INAR(3) -42.79 -122.76 -149.05 -222.33 -249.5 -321.66 -383.2 -429.65 -524.76 -606.25 

INAR(4) -59.22 -134.03 -169.8 -250.51 -271.44 -365.12 -399.49 -444.37 -556.58 -618.10 

 

 

 

 

BIC 

INAR (1) 55.326 124.485 187.083 252.527 265.967 360.174 454.71 437.781 601.056 674.152 

INAR (2) 60.818 115.629 163.410 222.381 258.273 334.759 359.03 432.694 544.182 586.913 

INAR (3) 49.133 128.961 155.203 228.447 265.603 337.747 389.27 435.719 530.817 632.307 

INAR  (4) 53.669 112.307 138.010 188.671 249.575 303.237 350.59 422.462 524.660 626.175 

 

 

HQIC 

INAR(1) 58.255 113.682 158.22 198.201 229.432 279.271 372.84 342.131 466.901 486.624 

INAR(2) 46.630 105.417 146.663 167.322 227.383 259.807 329.00 344.881 407.259 454.401 

INAR(3) 41.708 102.347 144.802 173.535 231.256 281.795 336.34 351.731 399.786 436.413 

INAR(4) 34.976 95.882 123.454 159.258 221.786 238.939 315.44 325.961 390.732 414.011 

 

 

 
Figure 1a: AIC of the fitted INAR (p) models when 

there is no outlier 

 

 
Figure 1b: BIC of the fitted INAR (p) models when 

there is no outlier 
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Figure 1c: HQIC of the fitted INAR (p) models 

when there is no outlier 

 

Table 1 shows the average values of AIC, BIC and 

HQIC of the fitted models computed from 1000 

iteration of data simulated from poison distribution 

without outlier. The values of the criteria in the Table 1 

were plotted on Figures 1a, 1b and 1c, respectively. It is 

observed that the model’s orders exhibit similar pattern 

of fit across sample sizes. However the best fitted 

model is INAR (4) followed by INAR (2) with least 

value three criteria across sample sizes. INAR (1) 

seemingly show the least fit for count time series data 

with no outlier. 

 

 

Table 2: Performance of fitted models with low level of outliers (10%) 

Criteria 
Sample Sizes/ 

Model 
30 60 90 120 150 180 210 240 270 300 

AIC INAR(1) -63.97 -121.23 -192.18 -253.00 -299.31 -360.71 -440.33 -539.01 -549.50 -618.33 
INAR(2) -57.87 -118.66 -171.34 -250.81 -298.97 -344.92 -416.11 -501.80 -535.90 -610.98 

INAR(3) -52.89 -116.36 -165.05 -245.70 -288.15 -344.87 -397.57 -499.92 -513.40 -598.46 

INAR(4) -49.36 -111.31 -157.21 -243.96 -283.79 -336.69 -389.41 -498.57 -510.90 -581.85 

BIC INAR (1) 66.083 123.302 194.234 255.044 301.346 362.735 442.35 541.036 551.554 620.348 
INAR (2) 62.091 122.796 175.435 254.886 303.039 348.973 420.16 505.846 539.973 615.020 

INAR (3) 59.226 122.561 171.2 251.824 294.245 350.956 403.64 505.988 519.464 604.512 

INAR  (4) 57.816 119.581 165.406 252.115 291.921 344.803 397.49 506.659 519.006 589.929 
HQIC INAR(1) 65.663 130.887 202.165 251.476 310.520 412.470 463.92 553.919 565.459 641.312 

INAR(2) 52.462 121.306 177.308 235.33 300.420 379.290 416.06 510.627 519.296 601.269 

INAR(3) 51.469 121.078 174.752 232.652 298.050 377.800 413.01 505.237 515.528 599.851 
INAR(4) 50.724 119.86 173.362 230.011 295.760 376.570 411.89 505.162 515.398 594.688 

 

 

 
Figure 2a: AIC of the fitted INAR (p) models when 

there is low proportion outlier 

 

 

 
Figure 2b: BIC of the fitted INAR (p) models when 

there is low proportion of outliers 

 

 
Figure 2c: HQIC of the fitted INAR (p) Models 

when there is low proportion of outliers 

 

 

The average values of the fitted models' AIC, BIC, and 

HQIC which were computed from 1000 iterations of 

data simulated from a poison distribution without 10% 

outlier are displayed in Table 2. Plots of the criteria 

values from Table 2 were made in Figures 2a, 2b, and 

2c, in that order. It is noted that the model's orders show 

a consistent fit pattern for all sample sizes. With the 

least value three criteria across sample sizes, INAR (2) 

is the second best fitted model, after INAR (4). The 

least fit for count time series data without low outlier 

appears to be indicated by INAR (1). 
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Table 3: Performance of fitted models with high level of outliers (20%) 
Criteria Sample Sizes/ 

Model 
30 60 90 120 150 180 210 240 270 300 

AIC INAR(1) -69.92 -125.59 -177.96 -254.08 -291.62 -357.97 -454.00 -526.15 -546.72 -622.23 

INAR(2) -54.39 -121.89 -176.63 -247.62 -284.63 -337.10 -413.46 -496.89 -545.52 -617.23 
INAR(3) -19.23 -87.82 -151.41 -201.45 -286.71 -322.19 -392.83 -482.69 -537.74 -607.73 

INAR(4) -27.00 -95.631 -165.36 -223.29 -249.23 -306.36 -390.17 -478.85 -531.67 -606.28 

BIC INAR (1) 72.031 127.656 180.01 256.115 293.649 359.993 456.02 528.174 548.743 624.247 
INAR (2) 58.612 126.021 180.73 251.703 288.691 341.159 417.51 500.936 549.563 621.271 

INAR (3) 25.574 101.021 170.56 207.564 292.811 328.273 398.90 488.767 543.798 613.782 

INAR  (4) 35.453 103.904 173.56 231.454 257.362 314.472 398.27 486.945 539.749 614.358 
HQIC INAR(1) 53.711 120.866 162.265 244.577 307.65 377.75 412.50 496.384 526.866 524.999 

INAR(2) 60.889 122.413 178.581 228.411 279.95 324.68 366.66 450.354 488.872 497.698 

INAR(3) 24.556 111.554 166.720 198.811 278.62 322.61 360.46 448.281 487.738 496.568 
INAR(4) 49.567 113.717 168.517 218.534 267.21 320.76 359.97 447.568 486.846 496.045 

 

 

 
Figure 3a: AIC of the fitted INAR (p) models when 

there is high proportion of outliers 

 

 
Figure 3b: BIC of the fitted INAR (p) models when 

there is high proportion of outliers 

 

 
Figure 3c: HQIC of the fitted INAR (p) models 

when there is high proportion of outliers 

 

Plots of the criteria values from Table 2 were made in 

Figures 2a, 2b, and 2c, respectively. INAR (3) is more 

robust to higher level of outlier compare to other 

models especially when sample size is low and 

moderate 200, as sample size increase, the INAR (4) 

take the lead with the least value BIC and HQIC 

criteria. The least fit for count time series data high 

level of outlier appears to be indicated by INAR (3) and 

INAR (4) at small and large sample size, respectively. 

 

CONCLUSION 

A problem that is frequently encountered in many 

scientific and public health applications is time series of 

count with outlier. This kind of series has proven to be 

quite challenging to statistically model. As a result, our 

investigation has identified a model with a few outlier 

levels. When evaluating such data, failing to take these 

into account might lead to the identification of spurious 

connections as well as inaccurate and occasionally 

misleading conclusions. INAR (1), INAR (2), INAR (3) 

and INAR (4) were used to fit data with no outlier, 10% 

outliers and 20% outliers which represent no, low and 

high level of outliers in order to determine the best 

among the aforementioned models for each category of 

outliers injected in the simulated data and sample size. 

It was discovered that the highest performing model 

when fitted different count time series data with 

different levels of outlier was the INAR (4) when there 

is no outlier in the data and when there is low level of 

outliers at various sample sizes. However, INAR (3) is 

more robust to higher level of outlier compare to other 

models especially when sample size is low and 

moderate 200, as sample size increase, the INAR (4) 

take the lead with the least value BIC and HQIC 

criteria. The least fit for count time series data high 

level of outlier appears to be indicated by INAR (3) and 

INAR (4) at small and large sample size respectively. 

This work suggested some specific time series models 

that can be used to fit a type of count data with some 

accompanying outlier structure. 

 

50 100 150 200 250 300

-6
00

-5
00

-4
00

-3
00

-2
00

-1
00

0

Sample Size

AI
C

INAR(1)

INAR(2)

INAR(3)

INAR(4)

50 100 150 200 250 300

10
0

20
0

30
0

40
0

50
0

60
0

Sample Size

B
IC

INAR(1)

INAR(2)

INAR(3)

INAR(4)

50 100 150 200 250 300

10
0

20
0

30
0

40
0

50
0

Sample Size

H
Q

IC

INAR(1)

INAR(2)

INAR(3)

INAR(4)



 

 
 

 FULafia Journal of Science & Technology, Vol. 8, No. 1 

 
20

Exploring the INAR Model on Heavy Tailed Time Series Data with Outliers 

REFERENCES 

Akeyede, I., Bakari, H. R. and Muhammad, R. B. 

(2022). Robustness of ARIMA and ACP models 

to over-dispersion in analysis of count data. 

Journal of Nigeria Statistical Association, 34, 

95-105. 

https://nsang.org/_uploads/uploads/2021/60112b

447fdc2_5.pdf 

Freeland R. K. (1998). Statistical analysis of discrete 

time series with applications to the analysis of 

workers compensation claims data. PhD Thesis, 

University of British Columbia, Canada. 

Retrieved from 

https://dx.doi.org/10.14288/1.0088709 

Harvey, A. & Fernandes, C. (1989). Time series models 

for count or qualitative observations. Journal of 

Business & Economic Statistics, 7(4), 407-417. 

doi:10.2307/1391639 

Johnson, N. L., Kemp, A. W. and Kotz, S. (2005). 

Univariate Discrete Distribution. Wiley, New 

York, DOI:10.1002/0471715816 

Musa, S. I., Nweze, N. O. and Adenomon, M. O. 

(2021). On performance of integer-valued 

autoregressive and poisson autoregressive 

models in fitting and forecasting time series 

count data with excess zeros. AJMS, 5(2), 20-27. 

https://doi.org/10.22377/ajms.v5i2.322 

Ndwiga A. Macharia, Oscar Ngesa, Anthony Wanjoya 

and Damaris FelistusMulwa (2019). Comparison 

of Statistical Models in ModelingOverDispersed 

Count Data with Excess Zeros. International 

Journal of Research and Innovation in Applied 

Science (IJRIAS), IV(V), 80-90. 

URL:https://www.rsisinternational.org/journals/i

jrias/DigitalLibrary/Vol.4&Issue5/80-90.pdf 

Popovic, P. M. (2015). A bivariate INAR(1) model with 

different thinning parameters. Statistical Papers, 

DOI 10.1007/s00362-015-0667-1. 

Saleh, I. M. and N. O. Nweze (2021). Model selection 

for time series count data with over dispersion. 

Asian Journal of Probability and Statistics, 

14(2), 60-73. 

https://doi.org/10.9734/ajpas/2021/v14i230326 

Silva, I., Silva, M. E., Pereira, I. and Silva, N. (2005). 

Replicated INAR(1) process. Methodology and 

Computing in Applied Probability, 7, 517–542. 

DOI:10.1007/s11009-005-5006-x 

Steutel, F. W. and Van Harn, K. (1979). Discrete 

analogues of self-decomposability and stability. 

The Annals of Probability, 5, 893–899. DOI: 

10.1214/aop/1176994950 

Weiß, H. (2009). Modelling time series of counts with 

over dispersion. Stat Methods Appl., 18, 507–

519. DOI 10.1007/s10260-008-0108-6 

 

 

 

https://nsang.org/_uploads/uploads/2021/60112b447fdc2_5.pdf
https://nsang.org/_uploads/uploads/2021/60112b447fdc2_5.pdf
https://dx.doi.org/10.14288/1.0088709
https://doi.org/10.22377/ajms.v5i2.322
https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/Vol.4&Issue5/80-90.pdf
https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/Vol.4&Issue5/80-90.pdf
https://doi.org/10.9734/ajpas/2021/v14i230326

